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ABSTRACT
Attacks like call fraud and identity theft often involve so-
phisticated stateful attack patterns which, on top of normal
communication, try to harm systems on a higher semantic
level than usual attack scenarios. To detect these kind of
threats via specially deployed honeypots, at least a minimal
understanding of the inherent state machine of a specific
service is needed to lure potential attackers and to keep a
communication for a sufficiently large number of steps. To
this end we propose PRISMA, a method for protocol inspec-
tion and state machine analysis, which infers a functional
state machine and message format of a protocol from net-
work traffic alone. We apply our method to three real-life
network traces ranging from 10,000 up to 2 million mes-
sages of both binary and textual protocols. We show that
PRISMA is capable of simulating complete and correct ses-
sions based on the learned models. A case study on malware
traffic reveals the different states of the execution, rendering
PRISMA a valuable tool for malware analysis.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.3 [Computer-Communication
Networks]: Network Operations—Network monitoring ; I.5.1
[Pattern Recognition]: Models—Statistical

Keywords
Markov Models, Clustering, Non-negative Matrix Factoriza-
tion, Honeypots, State Machine Inference

1. INTRODUCTION
In today’s fast changing area of network technology, new

services for communication emerge almost every day, such
as Internet telephony or television. While classic attack vec-
tors like server exploits are still a relevant threat, commer-
cially motivated attacks like call fraud and identity theft are
becoming increasingly widespread. These kinds of attacks
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are often just little aberrations from normal communication
patterns (see for instance [33, 19]) and are therefore hard
to detect using conventional honeypots with their exploit-
centric and often stateless view of the services.

Most of these services rely on already specified protocols,
of which usually only a selected subset is used. Other ap-
ply non-standard extensions or use a mixture of protocols to
implement communication. For example, web applications,
such as Twitter and Facebook, can be seen as extensions
of the HTTP protocol that implement a certain workflow
on top of the actual protocol. As a consequence, it is not
sufficient anymore to infer the underlying protocol specifica-
tion or to learn specific attack patterns, but special tailored
models for the actual network service at hand are needed.

Previous work on automatically constructing such models
has mainly followed two contrasting directions: One strain
of research has focused on extracting the complete protocol
specification from the implementation of services using taint
analysis [5, 35, 9, 24, 6]. Although very effective, these ap-
proaches require access to an implementation and cannot be
applied if only network traffic is available. A different direc-
tion has concentrated on learning and simulating network
vulnerabilities, most notably here is the honeypot Script-
Gen [23, 22]. While such honeypots can automatically infer
parts of a protocol from network traffic, they have not been
designed for tracking involved attacks that require a longer
sequence of stateful communication.

In this paper, we present a probabilistic approach to model
both the message content and the underlying state machine
from network traffic. By inspecting the message interplay
between client and server based on a preceding event identi-
fication, our model is capable of learning an approximation
of the state machine of the service, which not only captures
the behavior but can also be used in a generative fashion for
simulating long communication sessions.

The main contributions of this protocol inspection and
state machine analysis (PRISMA) are as follows:

1. Our method is able to learn a stateful model from the
network traffic of a service that can be used for simu-
lating valid communication.

2. To construct this model, our method infers the mes-
sage format, the state machine as well as rules for
propagating information between states using machine
learning techniques.

3. Our method builds on special tailored embedding and
clustering techniques that allow for large-scale appli-
cations with millions of network messages.



The remainder of the paper is structured as follows: Sec-
tion 2 describes the individual steps of PRISMA. After eval-
uating PRISMA on different data sets in Section 3, we give
a detailed account of the related work in Section 4. Further
directions and application domains are outlined in Section 5,
which concludes the paper.

2. THE PRISMA METHOD
Given a collection of recorded traffic of a specific network

service, the goal of PRISMA is to extract a state machine
with associated templates and rules, which describe the in-
formation flow from message to message. After a first pre-
processing stage, where the raw network traffic is converted
to sessions containing messages, our method proceeds in the
following steps (see Figure 1):

1. To find common structures in the data, we first define a
similarity measure between messages. This is done by
embedding the messages in special vector spaces which
are reduced via statistical tests to focus on discrimina-
tive features (see Section 2.2).

2. We proceed by modeling each session of messages as
a sequence of events. By leveraging the embedding
of the previous step we apply part-based or position-
based clustering which groups individual messages into
events (see Section 2.3).

3. Each of the extracted sequences of events can be seen
as a path through the protocol’s state machine. To in-
fer an approximation of this state machine, we use the
probabilistic concept of Markov models, where transi-
tions are linked with probabilities (see Section 2.4).

4. Finally, we automatically generate templates for the
messages associated with each state of the Markov
model and derive rules that describe the information
flow between the different states during a communica-
tion (see Section 2.5).

Throughout the paper we use the term message as an
atomic exchange of a byte sequence between a client and
server. An event describes a certain action on the client or
server side which is directly connected with the state ma-
chine of the modeled network service. A template is a mes-
sage structure consisting of a sequence of tokens and fields.
Rules describe the message flow between the fields of con-
secutive templates instantiated for a concrete session.

2.1 Preprocessing of Network Data
To learn the inner structure and behavior of a specific net-

work service we first have to collect sufficient data for the
inference. Normally, this can be done at a dedicated sen-
sor, which collects the raw packet data in a binary format
for instance via the tool tcpdump. Apart from the payload,
each packet contains a source and destination address. To
actually reconstruct the information flow between a client
and a server, these packets have to be re-assembled to elim-
inate artifacts from the network and transport layer. For
this task we have devised a network recorder which uses the
mature library Libnids for re-assembling TCP and UDP
communication streams.

These streams are the input for a session extractor, which
generates for each re-assembled packet payload a specific

session identifier according to the source and destination
of the packet. If two packets occur with a very small de-
lay of τmsg milliseconds, the payloads will be merged. If a
specific session identified by its source and destination does
not have any more communication within τsession millisec-
onds, the corresponding session will be flagged as termi-
nated, such that any other message arriving with this specific
source/destination combination will open a new session.

This network recorder and session extractor preprocess
the raw network traces into sessions containing messages.
In the following we will use this preprocessed data in the
subsequent steps of the analysis.

2.2 Embedding of Messages
After the preprocessing, a message x can be modeled as

sequence of bytes, that is, x P B�, with B � t0, . . . , 255u. To
infer common structures from a pool of messages we need a
similarity measure which is capable of focusing the analysis
on discriminative features. To account for different styles
like binary versus textual protocols we introduce two differ-
ent embeddings both of which can be compressed via statis-
tical tests to enable a more focused analysis.

2.2.1 Embedding with n-grams
One common approach from the domain of natural lan-

guage processing is to map byte sequences into a finite-
dimensional feature space whose dimensions are associated
with n-grams, substrings of fixed length n. Formally, we can
describe these substrings as W � Bn and define an embed-
ding function φ : B� ÞÑ R|W | as follows

φpxq :� pφwpxqqwPW with φwpxq :� occwpxq

which simply records, whether a specific n-gram w occurs in
a given string. For instance,

φp”Hello”q � p0, . . . ,
Hel

1 ,
ell

1 ,
llo

1 , . . . , 0qT P R16777216

for n � 3. From this example we can see that the corre-
sponding feature space has a finite but high dimensionality.
However, this space is generally sparsely populated, which
allows for efficient data representation [31].

2.2.2 Embedding with tokens
Another well-known concept from the domain of natural

language processing is the tokenization of a byte sequence
via pre-defined separator characters S. This embedding
φ : B� ÞÑ R|W | maps the byte sequence to a feature vec-
tor, which records the occurrences of all possible words W
according to the separators, that is, φpxq :� pφwpxqqwPW .
For example, if we consider the set of separators S � t u,
we get the following embedding

φp”Hey ho, let’s go”q � p0, . . . ,
Hey

1 ,
ho,

1 ,
let’s

1 ,
go

1 . . . , 0qT P R|W |.

Similarly to the n-gram embedding, the dimension of the re-
sulting feature space is large but sparsely populated, there-
fore efficient storage models are also available [31].

2.2.3 Dimensionality Reduction
For finding structure in network communication, the ana-

lysis has to focus on features which discriminate the mes-
sages in the data pool. Volatile features, like randomly gen-
erated nonces or cookies, will only occur once and lead to
an unnecessary bloated vector space. The same holds true
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Figure 1: Overview of the Protocol Inspection and State Machine Analysis (PRISMA).

for constant tokens of the protocol, since their occurrence in
a message will be almost certain.

Consequently, we use a statistical test-driven dimension
reduction [20], which allows us to split the feature space as
follows: F � Fconstant Y Fvariable Y Fvolatile. To this end,
we apply a binomial test to each feature, whether it is dis-
tributed with a frequency of approximately 1 (corresponding
to a constant feature) or 0 (a volatile feature, respectively).
After application of a multiple testing correction [15] we keep
only those features, which are not constant and not volatile
given a statistical significance level of α � 0.05. To further
simplify the feature space, we group together features which
exhibit a correlation near to one.

Given these embeddings and dimension reduction tech-
nique we are now able to define a data-driven feature space
for messages, which allows us to introduce geometrical con-
cepts like metrics. This opens up the whole field of machine
learning tools to be applied for network communication.

2.3 Clustering for Event Inference
Messages which occur at specific events in the flow of com-

munication often exhibit similar structural features. Thus,
to extract event information we can exploit this structural
dependency. Inside a vector space we can define a metric to
capture our notion of the similarity between two messages.
For instance the Euclidean metric

depx, yq :�

d ¸
wPW

pφwpxq � φwpyqq2

calculates the distance between two points based on the oc-
currence of the |W | words contained in the whole corpus.
Using these metrics clustering algorithms can be applied to
extract common structures in a data pool and thereby indi-
rectly recover the underlying event information.

For inferring structure from network protocol traces we
suggest two possible clustering techniques: One for pro-
tocols, which are assembled of parts and one for mono-
lithic communication, where tokens are weighted according
to their absolute position in the message. Obviously, the ex-
perimenter is free to choose an appropriate clustering tech-
nique for the data at hand, but we found these two methods
to work best with protocol data of the described kind.

2.3.1 Part-based Clustering
Non-negative matrix factorization (NMF) describes the

data by an approximation of the whole embedding matrix

A P Rf̃ ,N containing N data points with f̃ reduced features

by two strictly positive matrices B P Rf̃ ,e, C P Re,N :

A � BC with pB,Cq � arg min
B,C

}A�BC} (1)

s.t. bij ¥ 0, cjn ¥ 0 .

The inner dimension e of the matrix product BC is chosen,
such that e ! f̃ leads to an even more compact representa-
tion. Due to the positivity constraint, the matrix B can be
interpreted as a new basis (the parts of a message), while
the matrix C contains the coordinates in this newly spanned
space (the weights of the different parts). These coordinates
are used to ultimately assign a message to a cluster by find-
ing the position with the maximal weight.

There are several possible solutions for solving Equation 1
(see for instance [28, 21, 16, 11]). Here we stick to a practical
implementation as introduced in [1]: Based on the Alternat-
ing Least Squares approach we alternately solve the follow-
ing constraint least square problems given the regularization
constants λB , λC

min
C

}A�BC}2 � λC}C}
2 (2)

min
B

}AJ � CJB}2 � λB}B}
2 (3)

with the corresponding solutions

C �
�
BJB � λBI

	
BJA (4)

B �
�
CCJ � λCI

	
CAJ . (5)

The regularization constants can be treated as a meta-
parameter of the procedure which we choose by cross-vali-
dation. Since both the number of features and the number of
samples in the matrix A can get quite large (for instance the
FTP data set introduced later contains roughly 1.8 million
samples and 90,000 features), direct calculation of Equa-
tions (4) and (5) often is infeasible.

Therefore, we devise a reduced, equivalent problem, tak-
ing into account that after the dimension reduction step
of Section 2.2 we have duplicates in our data matrix A �

ra1, . . . , aN s, i.e. denote by rA P Rf̃��N the matrix without
duplicate columns. For the simplification of Equation (2)
note, that

ci �
�
BJB � λCI

	
BJai.

Hence, we can replace A by rA in Equation (4) to obtain rC
and then duplicate the resulting rci accordingly to retrieve
C. For the simplification of Equation (3) note, that

}AJ � CJB}2 � } rAJ � rCJB}2W (6)



with W the rN� rN diagonal matrix consisting of the number

of duplicates of the corresponding column in rA. As shown
in [14], the optimization problem of Equation (3) with the
right side of Equation (6) as new objective can be solved by

B �
� rCW rCJ � λI

	 rCW rAJ .

These two simplifications allow us to apply NMF to even
large data sets with no reduction in accuracy. The inner
dimension e can be chosen according to an argument in [32]:
The ordered eigenvalues of the data matrix can be split into
a part which is actually contributing to the real signal and a
noise part. If we estimate the eigenvalues λi on the original

data matrix A and the eigenvalues pλi on a scrambled versionpA, where we randomize the features for each message and

add confidence intervals to the eigenvalues λi, pλi according
to [18], we can pick the last index as inner dimension e, in

which the confidence intervals λe, pλe do not overlap.

2.3.2 Position-based Clustering
While NMF is a good choice for protocols, where a mes-

sage is constructed out of parts, some protocols show very
position-dependent features. Since the clustering step in
PRISMA is totally independent from the concrete algorithm
used, as long as the procedure assigns a cluster label to each
message, the experimenter is not fixed to NMF but is free
to choose an appropriate method. To take position depen-
dent features into account, we propose a weighted distance
measure

dwpx, yq :�

d ¸
wPW

p101�ppw,xqφwpxq � 101�ppw,yqφwpyqq2,

where ppw, xq returns the position of token w in string x.
This distance measure can be used to calculate the distance
matrix D, which subsequently forms the input to single link-
age hierarchical clustering. Note that we can also restrict the
calculation of the distance matrix to the reduced data ma-
trix rA. This not only saves computing time but also keeps
the size of D in a reasonable range.

2.4 Inference of the State Machine
Network communication is driven by an underlying state

machine, in which certain events trigger certain responses
and switches to proceeding states. Sometimes, these switches
are probabilistic by nature (for instance a service is tem-
porarily unavailable) or can be modeled as such (for instance
in a login procedure 90% of the attempts are successful).

One possible way to model the state machine of a net-
work service in a probabilistic way is by a hidden Markov
model : The unobserved states correspond to the internal
logical states of the service and the messages sent over the
network correspond to emitted symbols. Using the Baum-
Welch algorithm [2] and enough data of service communica-
tion it would be possible to estimate an underlying hidden
Markov model to describe the observed data. However, the
Baum-Welch algorithm does not guarantee that the found
model has the highest likelihood in a global sense.

2.4.1 Learning the Markov Model
Instead of directly trying to infer the underlying hidden

Markov model, we start with a regular Markov model which
we will later on simplify to a minimal hidden variant. The

whole learning process is therefore deterministic and has no
inherent randomization like the initial model matrices in
the Baum-Welch algorithm. With this approach we circum-
vent the problem of finding a potential non-optimal model.
This determinism comes at a price: it is a well known fact
that hidden Markov models are more powerful than regular
ones [10]. In summary we trade the potential uncertainty
with a decrease in model complexity, therefore regularizing
the hypotheses space.

Given the session information of the preprocessing step
and the label information for each message of the event clus-
tering we could directly learn a regular Markov model of
event chains by estimating the initial and transition prob-
abilities by their maximum likelihood estimates. However,
in this simple Markov model we would drop the direction
of the event (i.e. was an event triggered by the client or
the server) and limit the history to one message due to the
Markov assumption (i.e. the generation of the next event
depends just on the previous one). Especially the last limi-
tation would be too strict for network communication, since
we would loose the context in which a message would have
been generated.

2.4.2 Convoluting the State Space
To circumvent the limitation of the regular Markov model,

we use a convoluted and communication-annotated version
of the event sequence of a session as follows:

1. Each event will be annotated to reflect, whether it was
generated from the client or the server side.

2. For a horizon of k we convolute the annotated and
padded event sequence by sliding a window of size k
over it and recording the occurring k-tuples.

As an example assume we have observed the event se-
quence rabcds where the messages were generated alternat-
ingly from the client and server. With a horizon of k � 2
we would convolute this event sequence to

rpH,Hq, pH, aCq, paC , bSq, pbS , cCq, pcC , dSqs.

So the new, convoluted event space rE will contain p2|E| �
1qk potential events, with pH,H, . . . ,Hq being the starting
state. By calculating the transition probabilities in this new

convoluted event space rE by their maximum likelihood esti-
mates we specify a regular Markov model with an annotated
event horizon of k.

2.4.3 Minimizing the Markov Model
For client server communication a horizon of at least k � 2

is necessary, to keep the communication context. For more
involved processes an even higher horizon might be nec-
essary, which leads to an exponential growth of possible
states. We will see in the evaluation section, that for real
network communication this convoluted state space is often
very sparsely populated, yet the resulting networks can be
large, making the introspection by a human user difficult.

As a remedy we propose the following minimization al-
gorithm to boil down the size of the Markov model while
preserving its overall capabilities:

1. Transform the Markov model M into a deterministic
finite automaton (DFA) xM :

(a) Keep transitions which have a probability bigger
than zero and their associated states.



State AS State BC State CS

Session 1 ftp 3.14 USER anon 331 User anon ok

Session 2 ftp 3.12 USER ren 331 User ren ok
...

...
...

Session n ftp 2.0 USER liz 331 User liz ok

Template ftp l USER l 331 User l ok

Figure 2: Example of template generation for a sim-
plified FTP communication.

(b) At each transition the DFA xM accepts the new
event of the second state (for example the transi-
tion connecting state paC , bSq with state pbS , cCq
would consume event cC).

2. Apply the DFA minimization algorithm as introduced

in [26] to get the equivalent DFA �M with the minimal
number of states but accepting the same language.

3. As a side effect, this algorithm returns an assignment
A
rE,�M of the original states of the convoluted event

space rE to the compressed states of the DFA �M .

The resulting DFA �M can be used for the inspection of
the underlying state model and can be interpreted as a spe-
cial hidden Markov model: Instead of observing the convo-

luted events rE we now observe the states of �M according to
the assignment A

rE,�M found by the minimization algorithm.
These meta-states subsume equivalent states, and will there-
fore lead to the acceptance of the same event sequences as
the original model. We will show in the evaluation section,
that these simplified models drastically decrease the model
size and are therefore good candidates for the analysis of the
state machine by a human administrator.

2.5 Learning Templates and Rules
Each session can be seen as a sequence of events which

trigger specific state switches of the state machine. To learn
the general information flow during this process, we general-
ize the messages associated with a state to a template that
consists of fixed and variable parts, which often are filled
by contents of previous messages. Exploiting the extracted
Markov model we are now ready to give a procedure to ex-
tract templates and rules for the network service at hand.

2.5.1 Inference of Templates
In the event clustering step, we focused on variable, yet

neither constant nor volatile features to identify common
patterns in the exchanged messages. While this focus makes
sense for the identification of underlying events, it is essential
to have all features back for the generation of valid, protocol-
conformant messages.

An additional aspect for the extraction of generic message
templates is the underlying state machine of the analyzed
service: it is very likely, that the exchanged messages cor-
relate with the current state of the service. Thus, a valid
assumption is to assign the messages of each session to its
according state in the previously extracted state machine
as shown for an artificial example in Figure 2: By looking
for recurring tokens in each state, generic templates can be
constructed containing fixed passages and variable fields ac-
cording to the distribution in the learning pool.

In more detail, the template inference procedure is struc-
tured as follows:

1. Tokenize each message according to the previously cho-
sen embedding.

2. Assign the message of each session to the state of the
inferred Markov model.

3. For each state of the Markov model:

(a) Group all assigned messages with the same num-
ber of tokens and process each of these groups.

(b) If all messages in a group contain the same token
at a specific position, a fixed token is recorded at
the resulting template, otherwise a variable field
is saved.

At the end of this procedure we will have templates for each
state of the Markov model representing the generic messages
that might occur. Note that each state might have several
different templates assigned according to the observed length
distribution: I.e., we simplify the multiple alignment proce-
dure for the extraction of generic templates by focusing the
alignment to messages of the same length.

2.5.2 Inference of Rules
Finding rules for filling specific fields in these templates

according to previously seen messages now amounts to a
simple, yet powerful combination of the Markov model, ex-
tracted templates, and session information. For each pos-
sible combination of template occurrences of the horizon
length k, i.e., pt1, t2, . . . tkq:

1. Find all messages which are assigned to these k tem-
plates and occur in a session in this exact order.

2. For each field f in the template tk:

(a) Look for a rule to fill f with field content f̂ �� f
of templates pt1, t2, . . . tkq in F% of the sessions.

(b) If no rule matches, just record the tokens, that
occur in the training pool (Data rule).

The checked rules are described in Table 1. This pro-
cedure ensures that information that is found in preceding
messages which can systematically reproduce contents in a
following message in F% of the cases will get copied over.
For instance in the example shown in Figure 2 we can ob-
serve that in all cases the field of the template associated
with state C can be filled with the field of the previous mes-
sage. The Data rule acts as a fallback solution if no match
could be found and as a pump-priming rule for the first mes-
sages of a session.

2.6 Simulation of Network Communication
The inferred PRISMA model now contains three parts:

the actual Markov model, the inferred templates and the
rule sets associated with these templates. To use these parts
of a PRISMA model for simulation of a communication we
devised the Lively Essence Network Sensor (LENS) depicted
in Algorithm 1. In addition to the inferred model parts, this
module is initialized with the role (client or server) which
should be simulated. Note that the PRISMA model itself
is role agnostic and therefore can be used to simulate both
sides of a communication. This allows us to even let the



Rule Description
Copy Exact copy of the content of one field to another.
Seq. Copy of a numerical field incremented by d.
Add Copy the content of a field and add data d to the

front or back.
Part Copy the front or back part of a field splitted by

separator s
Data Fill the field by randomly picking data d which we

have seen before.

Table 1: Rules which are checked during model
building. Parameters like d and s are automatically
inferred from the training data.

Algorithm 1 The Lively Essence Network Sensor (LENS)

1: function LENS(markovModel, templates, rules, role)
2: while communication is active do
3: Wait for message with timeout t
4: if message M received then
5: Find matching template T according to the

current state
6: Split the message M according to T into fields
7: Switch the state to the state associated to T
8: Randomly choose the state S according to the

transition probabilities of markovModel
9: if S is in accordance with role then

10: Find rule set according to the previous
k (horizon) templates

11: Apply rules to fill the new template to form
the message

12: Send out message
13: Set current state to S

model talk to itself by running two instances of LENS with
different roles and passing the messages generated from one
instance to the other and vice versa.

Appendix A gives a complete example of a PRISMA model
based on a simple toy problem: Given network traces of
a robot communicating with its environment a behavioral
model is learned via PRISMA.

3. EVALUATION
In this section we show, that the PRISMA method is capa-

ble of learning and simulating network communication from
real network traces. To this end we use several network
traces recorded via tcpdump and plug one part of the data
into our processing pipeline and check the quality of the
model both according to the remaining data and syntactical
and semantical features of the simulated sessions. By this we
ensure an evaluation of PRISMA under real-life conditions:

1. Comparison against the held-out sessions assures com-
pleteness of the models, meaning that the learned mod-
els are capable of replaying real sessions as observed in
the data pool.

2. Checking syntactical and semantical features of the
simulated sessions guarantees the correctness of the
models from a communication perspective.

In Section 3.1 we introduce the data sets and discuss the
resulting feature spaces after dimension reduction. Then,

Size Dimension % kept % unique
SIP 34,958 72,937 0.39% 2.58%
DNS 5,539 6,625 13.15% 35.64%
FTP 1,760,824 87,140 2.17% 0.24%

Table 2: Properties of data sets: size gives the total
number of messages in the data set and dimension
the number of features before the dimension reduc-
tion step. % kept and % unique gives the percentage
of features and messages, which are kept after the
dimension reduction step.

we look at the general properties of the learned PRISMA
models in Section 3.2 and the completeness and correctness
of these models in Section 3.3. We conclude the evaluation
with a case study on malware analysis, showing that PRIS-
MA can be useful in application domains beyond honeypots.

3.1 Data sets and Dimension Reduction
For the evaluation of the PRISMA framework we have

chosen three representative data sets, of which two are text-
based and one is purely binary (see Table 2):


 SIP: A data set recorded in a real, medium sized tele-
phony infrastructure containing roughly 7 days of com-
munication of 20 participants with different Session
Initiation Protocol (SIP) clients.


 DNS: Domain Name System (DNS) requests of a home
network with 7 different clients collected during one
day of heavy use.


 FTP: File Transfer Protocol (FTP) data set from the
Lawrence Berkeley National Laboratory [29] contain-
ing 10 days of communication.

Naturally, these data sets vary in size: while the SIP
data set is a medium-sized pool of roughly 35,000 messages,
the DNS data set contains just 6,000 messages. The FTP
data comprise of nearly 1.8 million messages rendering it the
biggest data set of the evaluation. To accommodate the dif-
ferent properties of the data sets, we apply different embed-
dings: Since SIP and FTP consist of human-readable text,
both can be tokenized with the usual white space characters.
Due to the binary layout of the DNS data, this tokenization
approach would not be feasible, therefore we have chosen a
2-gram embedding for DNS. For all data sets we randomly
select 90% of the data to learn the PRISMA model and keep
the rest for the evaluation carried out in Section 3.3.

The resulting feature dimensionality reductions and unique
messages are shown in Table 2. The first thing to note is the
power of the dimension reduction step: the relative number
of kept features ranges from 0.4% for SIP, 13.2% for DNS
and 2.2% for the FTP data set showing the extreme focus,
which emanates from the dimensionality reduction. A direct
consequence of this is the relative number of unique messages
for each data set, ranging from 2.6% for SIP, 35.6% for DNS
and 0.2% for FTP. The striking difference between DNS and
SIP/FTP in terms of reduction can clearly be explained by
the different conceptual layouts of the languages: the highly
compressed, binary format of the DNS protocol leaves less
room for optimization of the feature space, therefore also the
number of unique messages after the dimension reduction is
higher compared to the other text-based protocols.



# nodes Coverage Min. DFA Coverage
SIP 148 14.5% 100 9.8%
DNS 381 0.8% 153 0.3%
FTP 1,305 0.8% 653 0.4%

Table 3: Number of nodes for the PRISMA models
both for the unoptimized Markov model and the
minimal DFA. Coverage relates these numbers to
the potential number of nodes possible.

Copy Seq. Add Part Data Total
SIP 1,916 77 135 52 1,793 3,972
DNS 3,142 4 0 0 3,527 6,673
FTP 532 18 253 35 4,671 5,509

Table 4: Number of different rules of the PRISMA
models extracted for the different data sets.

Overall, we see that the dimension reduction is highly ef-
fective even for binary protocols. By focusing only on the
varying parts of the messages and unique messages in this
reduced feature space, valuable computation time can be
saved and renders the PRISMA approach capable of model-
ing even big data collections.

3.2 Properties of Learned Models
Following the embedding and dimensionality reduction

step we apply the event clustering step as described in Sec-
tion 2.3: Both for the SIP and DNS data set we apply the
NMF clustering algorithm, since a quick inspection of the
data shows, that the part-whole-relationship underlying the
NMF algorithm holds for these two data sets. The rela-
tive short FTP messages follow a more or less fixed setup,
rendering the position-dependent clustering approach better
suited for this kind of data.

Table 3 summarizes the number of nodes of the extracted
Markov model for each data set and relates this number
to the potential number of nodes which are attainable as
described in Section 2.4. We see that the total number of
nodes for the SIP data set is smallest, yet the relative cov-
erage is highest. For DNS and FTP the absolute number
of nodes is higher, but the relative coverage of the potential
node space is very sparse, indicating that there is a inher-
ent dependency of relative coverage and estimated number
of clusters. Application of the DFA minimization algorithm
to the Markov model significantly reduces the number of
nodes for the models converting the resulting networks into
dimensions manageable by human users.

The corresponding number of rules for each model is shown
in Table 4. Note that for the n-gram embedding the Add and
Part rules are deactivated, since they are already handled
by the Copy rule. We see, that all rules are represented.
The SIP data set exhibits a higher number of more involved
rules compared to all other data sets reflecting the highly
redundant structure of this protocol. Both DNS and FTP
have an inherent variable part (the server name for DNS and
the file names for FTP) which results in a higher number of
Data rules compared to the SIP data.

Figure 3 gives a visual impression of the learned model
for the FTP data set. To generate this session we simulated
both sides of the communication with our PRISMA model

learned on the FTP data set: one model was executed to
act as the client and the other one acted as the server. We
see in the resulting log, that the session that was generated
is valid FTP: Starting with the initial login procedure, the
client sets the TYPE of the communication to binary data,
then enters passive mode and gets a file from the server.
Note, that the name of the file from the client request is
copied over to the corresponding reply of the server, showing
the power of the inferred rules. Obviously, the byte size of
56 is not the proper size of the requested file, since it was
chosen randomly from the Data rule, but the message itself
is a valid FTP reply showing the ability of PRISMA to even
generate new messages not seen in the training pool before.

3.3 Completeness and Correctness
While the previous figures and examples show that the

PRISMA method produces relatively condensed models of
both the embedding space and the state machine, questions
regarding the completeness and correctness of these models
are treated in this section.

3.3.1 Completeness
To judge the completeness of the models we take the 10%

of the held-out data and simulate either the client or the
server side to evaluate whether our learned model contains
a path, which could generate a session which resembles the
data most. Since the transitions in the model are proba-
bilistic, we cannot ensure that the path we choose during
the simulation is synchronized with the actual content of
the session. For instance, a session might contain a specific
branch of the state machine, which occurs just 5% of the
time like a server overload error reply or the like. To alle-
viate this probabilistic effect we repeat each simulation 100
times and introduce a determinism by feeding the first two
messages of a session to the model such that the states for
the first two messages which are exchanged are aligned.

The results of these simulations are reported in Figure 4.
We use the normalized Levenshtein distance as similarity (1
meaning equality) which counts the number of insertions,
deletions, or substitutions necessary to transform one string
into another. At each position of a session we take the max-
imum attained similarity over all repetitions to take account
of the probabilistic effect as described before.

For the SIP data set we observe that the number of equal
messages ranges between 80% and 60%. The similarity score
is almost never below 0.9 showing that the learned models
can correctly re-model the hold-out session. For DNS this
behavior is similar but shows more variance due to the rel-
ative low number of sessions having more than 6 messages.
The FTP data set shows an even better performance of the
PRISMA model with nearly all messages showing equality
up to position six. The frequency of exact resemblance then
stays always above 70% showing that even complex proto-
cols can be accurately simulated for more than four steps.

3.3.2 Correctness
Next, we focus on the syntactical and semantical correct-

ness of the generated messages. For the syntactical correct-
ness we utilize the protocol filters of the network protocol
analyzer Wireshark. Only for the FTP protocol we had to
check the validity of the commands manually according to
the RFCs [30, 12, 25, 13]. For the check of semantical cor-
rectness we apply the following rules:



1 220 <domain> FTP server ( Version wu-2.6.2(1) Mon Dec 30 16:58:35 PST 2001) ready.

2 USER anonymous

3 331 Guest login ok, send your complete e-mail address as password.

4 PASS <password>

5 230 Guest login ok, access restrictions apply.

6 TYPE I

7 200 Type set to I.

8 PASV

9 227 Entering Passive Mode ( 131,243,1,10,9,240 ).

10 RETR groff-perl-1.18.1-4.i386.rpm

11 150 Opening BINARY mode data connection for groff-perl-1.18.1-4.i386.rpm ( 56 bytes).

Figure 3: Sample FTP session generated by executing two PRISMA models against each other (one as client,
one as server). Data fields are marked by boxes, exact copy rules are filled in gray.
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Figure 4: Distribution of maximal similarities by message position in a session replay. Recorded is the
normalized edit distance giving a 1.0 for equal messages. The size of the black bar corresponds to the
frequency of equal messages, the size of the dark gray bar for similarities ranging between 0.9 and 1.0, the
light gray bars for similarities ranging between 0.75 and 0.9.


 SIP: For each message of a session we check, whether
the CallID, from- and to-tag are preserved, since this
triple of values identifies a SIP-session.


 DNS: If the message of a session is a reply, we check
whether it was queried before in this session and has
the same query id.


 FTP: For each FTP request we check, whether both
the request and the returned reply code is a valid one
according to the RFCs [30, 12, 25, 13].

For each session we count the number of syntactically and
semantically correct messages and report the relative fre-
quency of correct messages for the complete session. In ad-
dition to the session generated for the completeness evalu-
ation (denoted as unidirectional) we also simulate 100,000
sessions, in which both sides are generated by our model
(denoted as bidirectional).

The results are shown in Table 5: The syntactical cor-
rectness of the sessions is almost always perfect. Only the
bidirectional simulations for the FTP data set shows a rela-
tive decline of having just 82% percent of the sessions which
are totally correct. Regarding the semantics, DNS shows

Syntax Semantic
Unidir. Bidir. Unidir. Bidir.

SIP 1.000 1.000 0.988 0.945
DNS 1.000 1.000 1.000 0.994
FTP 0.999 0.821 0.934 0.576

Table 5: Frequency of sessions having 100% syntacti-
cal and semantical correct messages for the different
simulation paradigms (uni- and bidirectional).

also a nearly perfect behavior. The performance of the SIP
model is with 98% and 94% of the sessions totally correct
for the uni- and bidirectional simulation, respectively, also
in a very good range. While the semantics for the FTP
in the unidirectional case show good behavior, the perfor-
mance declines for the bidirectional simulations: just 57% of
the sessions are totally correct. Since FTP sessions tend to
be very long, we investigate the correctness in more detail in
Table 6. By splitting the frequency bins we observe that the
bulk of the sessions have more than 80% correct messages.
In combination with the higher length of a FTP session this



Msgs. Syntax Semantic
Correct Unidir. Bidir. Unidir. Bidir.

100% 0.999 0.821 0.934 0.576
> 90% 1.000 0.953 0.988 0.878
> 80% 1.000 0.996 1.000 0.982

Table 6: Breakdown of cumulative syntactical and
semantical correctness of sessions for the FTP data.

shows that even for difficult, potentially vast communica-
tion patterns the PRISMA model is able to capture both
the syntax and the semantics of the communication.

In summary, the evaluation shows that the inferred PRIS-
MA models are very compact and show a very high degree of
completeness as well as syntactical and semantical correct-
ness. This renders these models ready for the deployment in
real-life network infrastructures to act as a honeypot specifi-
cally designed for the occurring traffic in this network. Con-
tacts to this honeypots can be held up for a high number of
steps to gather in-depth information of the behavior and in-
tentions of the potential intruder. This information cannot
only be used to estimate the threat potential in an infras-
tructure at a given time point but also to learn more about
the attacks or mischief being conducted.

3.4 Case Study: Koobface
In this section we apply PRISMA to network traffic col-

lected from malicious software by Jacob et al. [17]. We
picked one specific class of malware instances and used the
token embedding and part-based clustering. We had a total
of 147 sessions with 6,674 messages. A detail of the resulting
model is depicted in Figure 5.

In the upper part we see a scanning loop, in which the
malware tries to find a command-and-control server: as long
as the server does not answer in a specific format, the scan
is continued. After the malware has received a correct reply
in state FS a handshaking procedure between malware and
server takes place, which is followed by a download cycle. In
state IC , the malware starts to download the first file from
the list (go.exe), while in the following states all the other
files are downloaded. This can be nicely seen by the Data
rule associated to the template of state KC , which contains
several instances of the following paths:

/.sys/?getexe=tg.14.exe, /.sys/?getexe=ms.26.exe,

/.sys/?getexe=hi.15.exe, /.sys/?getexe=be.18.exe,

/.sys/?getexe=tw.07.exe, /.sys/?getexe=v2captcha.exe,

/.sys/?getexe=v2googlecheck.exe

By inspecting the extracted state machine and the associ-
ated templates and rules a malware analyst can gain in-
sights into the inner workings of a malware instance from
the collected network traces alone. This renders PRISMA a
valuable tool beyond the realms of honeypot applications.

4. RELATED WORK
The generation of valid models from communication net-

work protocols is, undoubtedly, a problem that has received
much attention in recent years. From the pure reverse en-
gineering perspective, the open source community has tried
to fully understand the inner workings of proprietary pro-
tocols in order to develop open implementations of several
network services (e.g. SMB, ICQ, Skype). Most of this work

has been done in a manual fashion, but the special relevance
of network protocol analysis for the security field has led to
many research efforts on automatic learning of the protocol
state machine and the format of messages involved in a valid
communication session.

The work by Beddoe [3] constitutes a first attempt to ex-
tract the fields from protocol messages by drawing upon ad-
vanced computational techniques. This approach proposes
the clustering of complete messages and the construction of
a phylogenetic tree in order to guide the process of global
sequence alignment through the Needleman-Wunsch algo-
rithm. With RolePlayer [8], the authors build on these ideas
to tackle the problem of automatically replaying valid mes-
sages from a protocol. Although they present a limited ap-
proach that requires the other side of the communication to
follow the script that has been used to configure the sys-
tem, it already considers the problem of simulating a state
dependent communication. Within the same scope is Re-
player [27]. The system presented by Newsome et al. pro-
poses an enhanced solution beyond heuristics, introducing
the concepts of theorem proving and weakest pre-condition
verification as means to handle protocol dependencies.

A similar approach with a specific security application and
also focused on replaying valid messages is introduced in the
realm of honeypots by ScriptGen [23, 22]. This low interac-
tion honeypot learns and simulates communication patterns
of vulnerabilities. The objective of ScriptGen is not to infer
an accurate specification of the protocol but to obtain the
maximum information on the exploitation attempt of a ser-
vice. Although closely related to our approach, ScriptGen is
designed for monitoring low-level attacks against implemen-
tations, whereas PRISMA enables collecting and tracking
semantic attacks on top of these implementations. In a sim-
ilar strain of research, Cui et al. [7] have studied the use
of tokenization and clustering of individual messages to find
fields in message structure. However, this work does not in-
fer the state machine of a protocol and thus can not be used
for simulating network communication.

Different approaches based on dynamic taint analysis have
been proposed to infer protocol specifications [5, 24, 35, 9].
In order to overcome the lack of semantics of clustering tech-
niques, they rely on dynamic binary analysis of the net-
work service that handles the protocol messages. This eases
finding keywords and delimiters but unfortunately all these
works defer the task of learning the protocol state machine.
An extension to this work with a practical focus on security
is carried out in [4]. Caballero et al. devise Dispatcher, a
system that is capable of infiltrating botnets (whose opera-
tion may be based on customized or proprietary protocols),
by being able to model, as in our work, messages from both
sides of the communication. Also at the host level, it is worth
mentioning the work of Wang et al. [34], which uses binary
analysis to extract the properties of messages at memory
buffers once they have already been decrypted.

Finally, Comparetti et al. [6] build on these ideas in order
to construct the state machine of a protocol, again from the
dynamic behavior of the application that implements such
protocol. The extent of their work certainly resembles ours,
nonetheless, our approach is free of the additional burden
of binary taint analysis since it is fully network based. The
gathering of large amounts of input traces for our system is
thereby a straightforward task.
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Content-Length: |_|
Connection: close
Content-Type: text/html; 
charset=iso-8859-1

GET /.sys/?getexe=go.exe HTTP/1.1 
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 ...
Host: www.xx.com
Connection: Keep-Alive
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User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; 
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#BLACKLABEL
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STARTONCE|http://www.xx.com/.sys/?getexe=fb.76.exe
...
START|http://www.xx.com/.sys/?getexe=v2captcha.exe
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MD5|ffd6c11a8dde1687943d4a53021ae9ca
#SAVED 2009-12-11 04:00:28

GET |_| HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 ...
Host: www.xx.com
Connection: Keep-Alive
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Download

Figure 5: Extracted state model for Koobface traffic: The upper part of the model corresponds to a scanning
phase of the malware. The middle part is a handshaking procedure with an infected machine, where the
malware gets a new list of malware which is finally downloaded in the lower part of the state machine.

5. CONCLUSION AND FUTURE WORK
With PRISMA we have presented a tool capable of learn-

ing and simulating communication of a given service from
network traffic alone. By representing the internal state
machine of the service with a Markov model and extract-
ing templates and rules via aligning the collected session to
this state machine, PRISMA is able to extract information
necessary for an efficient simulation of the data pool. The
evaluation shows that both from the viewpoint of complete-
ness and syntactical and semantical correctness PRISMA is
capable to emulate real-life network traffic.

Our next goal is to deploy PRISMA as a honeypot in
a dedicated network infrastructure. While our evaluation
shows that the PRISMA models are solid we expect valu-
able input of this real-life application to further robustify our
approach. Additionally, stateful fuzzing is an interesting fur-
ther application of PRISMA; for instance, one can use the
extracted Markov model to find communication paths inside
the state machine, which occur very seldom and therefore
should tend to be rather untested and error-prone. We be-
lieve that the template structure and the rules can give valu-
able clues which fields should be fuzzed with what content
to maximize the probability of an enforced error. The ana-
lysis of Koobface network traces with PRISMA shows that
the method can be readily applied in the domain of malware
analysis. Still, further refinements, for instance finding the
most interesting path in the state machine of the malware,
can enhance the usability of PRISMA for this scenario.
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APPENDIX
A. THE ROBOT PROTOCOL

In order to illustrate the message building algorithm used
by the PRISMA method, we have developed a closed game-
based experiment that eases to understand how the elements
learned are integrated with the Markov model.

The Robot game is a simple setup where a player is ran-
domly placed in a room filled with contaminated objects.
Its goal is to find these objects and carry them to the base
location where they will be eliminated. Unfortunately, it
has no view of the position of the objects or itself within
the room. Thus, in order to move around and notice if it
has found an object or reached the limits of the room, it
exchanges messages with a room controller.

In our experiment, the player role is performed by a robot
with a fixed algorithm. At first, it randomly walks through
the rectangular room until it finds an object. Then, it goes
straight up to the top of the room carrying the object and
to the left to reach the base, which is situated at the upper
left corner. The object is then destroyed and the robot is
dropped again randomly inside the room. The process con-
tinues until the robot has found and removed all the objects.

The complete setup has a client-server architecture where
the robot communicates with the controller by a simple pro-
tocol over the network. These network traces are then an-
alyzed by PRISMA, yielding a robot-honeyclient that is ca-
pable of mimicking the behavior of the original robot. The
robot client sends its instructions to the controller using the
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Figure 6: The Markov model of the robot protocol and the minimized version of the state model.

messages GO <dir> and CARRY <object> <dir>, where pos-
sible directions are UP, RIGHT, DOWN and LEFT. The controller
server responds with the following status messages after each
action of the robot: WALL, FREE, BASE and OBJECT <object>,
where <object> denotes the id of the object.

A.1 Markov Model
Figure 6 presents the Markov model of the robot protocol,

which has been extracted from the traces. As intended for
this example and for completeness, every possible message is
present in the pool of simulated communication data. There-
fore, the model represents the complete robot protocol. The
lower part of the Markov chain models the communication
between client and server during the exploration phase of
the robot, while the upper part models the loop where the
robot is carrying the object to the base. The subindex indi-
cates the active side of the communication, client or server,
in each state. The right side of Figure 6 depicts the sim-
plified model obtained after the minimization algorithm has
been applied to the original model. States labeled A, B and
C are meta-states resulting from the abstraction of several
states in the original model and are involved in each of the
described phases. Meta-state A represents the behavior of
the robot client during the exploration phase while meta-
states B and C are part of the carrying loop.

A.2 Templates and Rules
The different templates associated with each state of the

model are inferred from the traces obtained during the sim-
ulation. The number of runs is specified as an input pa-
rameter. Each run requires as many sessions to complete as
objects are placed in the room and each session is formed by

an arbitrary number of messages as a result of the random
direction of the movement. The following examples of tem-
plates and rules show how the search algorithm is integrated
with the model to build the different protocol messages:

State Template Format
OBJECTS 13 OBJECT l

CARRY1C 11 CARRY l UP

CARRY2C 10 CARRY l LEFT

CARRY3C 2 CARRY l l

FREES 5 FREE

Transition Type Src ID Src Field Dst Field
3;13;11 Copy 13 0 0
11;0;10 Copy 11 0 0
2;5;2 Copy 2 0 0
2;5;2 Copy 2 1 1

When an object is found by the robot, the room con-
troller builds a message with the format shown in template
13 in state OBJECTS. Following the only possible transi-
tion in the model, the next state is CARRY1C, where the
client constructs the message using the format of template
11 and the rule 3; 13; 11. This rule indicates that the data
in the field 0 must be copied to the field 0 of the current
template. This results in the message: CARRY <object> UP.
When the robot has hit the upper wall, it builds a message in
state CARRY2C according to template 10 and rule 11; 0; 10.
Now the robot is carrying the object to the LEFT in state
CARRY3C until it finds the base. The object and the di-
rection that must be followed are introduced in the message
format of template 2 associated to this state by using the
rules with transitions 2; 5; 2.


