
Defending Against Targeted Attacks with Pattern Recognition

Von der
Carl-Friedrich-Gauß-Fakultät

der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades eines
Doktoringenieurs (Dr.-Ing.)

genehmigte Dissertation

von
Hugo Gascón Polanco

Eingereicht am: 17. Dezember 2018
Disputation am: 2. April 2019
1. Referent: Prof. Dr. Konrad Rieck
2. Referent: Prof. Dr. Felix Freiling

2019

A Mateo y Pablo.

Acknowledgements

I am very grateful to my supervisor Prof. Dr. Konrad Rieck and to Prof. Dr.
Klaus-Robert Müller, for giving me the chance to come and play. Thanks
Konrad for your infinite drive and endless motivation. Leading by example is
the best way to lead.

Tammo Krüger, Guido Schwenk and the rest of the IDA team. Thanks for
softening the landing. You rock and you know it.

To all the gang, first at the University of Göttingen and later at TU
Braunschweig: Daniel Arp, Ansgar Kellner, Alwin Meier, Christian Wressneger,
Fabian Yamaguchi and the rest of the SECTUBS team. Time flies when you
are having fun. Also when a deadline is approaching.

To Dominik Kühne at TU Berlin, Carmen Scherbaum and Udo Burghardt
at the University of Göttingen, and Katja Barkowsky and Frank Rust at TU
Braunscheig. Thanks for keeping the engines running smoothly.

To Lukas Rist, Felix Leder, Ryan W. Smith, David Watson, Max Hils,
Natalia Stakhanova and rest of the bunch at The Honeynet Project. You are
the proof that a highly technical environment can be challenging but also warm
and inclusive.

To Andrew Gardner and Walter Bogorad: Life is about detours. Thank you
for inviting me to the best one I could dream of. To Reuben Feinman, Aleatha
Parker-Wood and the rest of the CAML and SRL teams at Symantec. You can
truly make a detour extraordinary. To Lucy and Dave LaPier, for giving me a
home very far away from home.

I want to thank the Deutsche Bahn for its double contribution to this work
in the forms of a productivity-boosting bahn-bonus area and a mean for regular
relief from a purely academic existence.

vi

To Victoria de Miguel, for her primordial roof and Adrian Brox, for his
primordial friendship. To my friends in Madrid and everywhere else: you are
the place I want to go back to. Special thanks to Juan L. Cantalapiedra for all
the m3ro evenings and game-of-life Macke nights.

To my parents, for their unconditional loving support and eternal patience
and to Regina: let’s keep the flukes rolling! Mateo, thank you for challenging
my time management skills to the extreme and considerably pushing me up
towards the level cap. Thanks Franzi, for everything.

Finally, I will always be grateful to Agustin Orfila. This thesis had not been
possible without your encouragment. I wish you’d known.

Zusammenfassung

In unserer heutigen Welt sind alle und alles miteinander vernetzt. Dies bietet
mächtigen Angreifern die Möglichkeit, komplexe Verfahren zu entwickeln, die
auf spezifische Ziele angepasst sind. Traditionelle Ansätze zur Bekämpfung
solcher Angriffe werden damit ineffektiv, was die Entwicklung innovativer
Methoden unabdingbar macht.

Die vorliegende Dissertation verfolgt das Ziel, den Sicherheitsanalysten
durch eine umfassende Strategie gegen gezielte Angriffe zu unterstützen. Diese
Strategie beschäftigt sich mit den hauptsächlichen Herausforderungen in den
drei Phasen der Erkennung und Analyse von sowie der Reaktion auf gezielte
Angriffe. Der Aufbau dieser Arbeit orientiert sich daher an den genannten drei
Phasen. In jedem Kapitel wird ein Problem aufgegriffen und eine entsprechende
Lösung vorgeschlagen, die stark auf maschinellem Lernen und Mustererkennung
basiert.

Insbesondere schlagen wir einen Ansatz vor, der eine Identifizierung von
Spear-Phishing-Emails ermöglicht, ohne ihren Inhalt zu betrachten. An-
schliessend stellen wir einen Analyseansatz für Malware Triage vor, der auf der
strukturierten Darstellung von Code basiert. Zum Schluss stellen wir Mantis
vor, eine Open-Source-Plattform für Authoring, Verteilung und Sammlung von
Threat Intelligence, deren Datenmodell auf einer innovativen konsolidierten
Graphen-Darstellung für Threat Intelligence Stardards basiert. Wir evaluieren
unsere Ansätze in verschiedenen Experimenten, die ihren potentiellen Nutzen
in echten Szenarien beweisen.

Insgesamt bereiten diese Ideen neue Wege für die Forschung zu Abwehrmech-
anismen und erstreben, das Ungleichgewicht zwischen mächtigen Angreifern
und der Gesellschaft zu minimieren.

Abstract

The speed at which everything and everyone is being connected considerably
outstrips the rate at which effective security mechanisms are introduced to
protect them. This has created an opportunity for resourceful threat actors
which have specialized in conducting low-volume persistent attacks through
sophisticated techniques that are tailored to specific valuable targets. Conse-
quently, traditional approaches are rendered ineffective against targeted attacks,
creating an acute need for innovative defense mechanisms.

This thesis aims at supporting the security practitioner in bridging this gap
by introducing a holistic strategy against targeted attacks that addresses key
challenges encountered during the phases of detection, analysis and response.
The structure of this thesis is therefore aligned to these three phases, with
each one of its central chapters taking on a particular problem and proposing
a solution built on a strong foundation on pattern recognition and machine
learning.

In particular, we propose a detection approach that, in the absence of
additional authentication mechanisms, allows to identify spear-phishing emails
without relying on their content. By devising a series of content-agnostic traits,
we are able to build characteristic sender profiles and recognize variations from
these profiles as spoofing attempts through machine learning classification.

Next, we introduce an analysis approach for malware triage based on the
structural characterization of malicious code. We propose two techniques for
embedding binary function call graphs that complement each other in terms of
explainability and accuracy: an explicit high dimensional mapping inspired by
graph kernels and an implicit low dimensional feature space learned through a
neural network architecture.

x

Finally, we introduce Mantis, an open-source platform for authoring,
sharing and collecting threat intelligence, whose data model is based on an
innovative unified representation for threat intelligence standards based on
attributed graphs. In addition, we devise a similarity algorithm for attributed
graphs that enables uncovering relations between threats at different levels of
granularity and that, incorporated into our platform, enables Mantis as an
information retrieval system that is capable of retrieving related reports given
individual observations from security incidents.

We evaluate our approaches in dedicated experiments that demonstrate
their usefulness and potential impact in a real-world setup. For instance, we
show how our approach for detection of spear-phishing emails can discriminate
thousands of senders, identifying spoofed emails with 90% detection rate and
less than 1 false positive in 10,000 emails. Additionally, our approach for
structural malware triage enables the analyst to assign an unknown malware
sample to its corresponding family with up to 98% accuracy and identify new
strains of malware through anomaly detection with more than 75% success
at only 1% of known mislabeled samples. Finally, in an evaluation with over
14,000 CyBOX objects, our platform for threat intelligence enables retrieving
relevant threat reports with a mean average precision of 80%, given only a
single object from an incident, such as a file or an HTTP request. We further
illustrate the performance of this analysis in two case studies with the attack
campaigns Stuxnet and Regin.

In the present geopolitical landscape of surveillance capitalism, oppres-
sive regimes and democratic institutions with poor accountability, there exist
perverse incentives for governments and large corporations to maintain the
current state of insecure affairs and keep the door open for targeted threats.
Individually, the methods and techniques proposed in this thesis push the
boundaries of existing research against targeted attacks by rendering the main
entry vector largely ineffective, assisting at better understanding the nature of
malicious code and enabling the sharing and correlation of threat data. As a
whole, these ideas open new avenues for research on defense mechanisms and
represent an attempt to counteract the imbalance between resourceful actors
and society at large.

Table of contents

Zusammenfassung vii

Abstract vii

List of figures xiii

List of tables xvii

Publications xviii

1 Introduction 1
1.1 Targeted Attacks . 3
1.2 Defense against Targeted Attacks with Machine Learning 6
1.3 Thesis Contribution . 8
1.4 Thesis Organization . 9

2 Detection 11
2.1 Traits in Email Structure . 14
2.2 Content-Agnostic Spear-Phishing Detection 18
2.3 Evaluation . 22
2.4 Limitations . 31
2.5 Related Work . 33
2.6 Summary . 36

3 Analysis 39
3.1 Structural Malware Triage . 41
3.2 Call Graph Extraction and Labeling 42

xii TABLE OF CONTENTS

3.3 Explicit Graph Embeddings for Malware 44
3.4 Learning Graph Embeddings for Malware Classification 50
3.5 Evaluation . 54
3.6 Limitations . 65
3.7 Related Work . 66
3.8 Summary . 69

4 Response 71
4.1 Threat Intelligence . 74
4.2 The MANTIS Platform . 76
4.3 Threat Similarity Analysis . 79
4.4 Evaluation . 83
4.5 Limitations . 91
4.6 Related Work . 92
4.7 Summary . 94

5 Conclusions and Outlook 97
5.1 Summary of Results . 99
5.2 Future Work . 101

Appendix A Traits in Email Structure for Characterization of
Senders 105

References 109

List of figures

1.1 Distribution of threats by sophistication and their corresponding
defense mechanisms [89]. 7

1.2 Phases of our holistic strategy against targeted attacks and
technical schema of each one of the corresponding solutions
proposed in this thesis. 8

2.1 Simplified email as running example. 15

2.2 Schematic overview of the detection: A classifier is used to
identify emails as spoofed when a mismatch between the output
of the classifier and the origin sender address occurs. 20

2.3 Overview of the evaluation data: (a) distribution of emails and
(b) distribution of senders in the 92 mailboxes; (c) training data
available for learning with varying emails per sender. 23

2.4 Average distance between senders 24

2.5 Feature drift over time . 24

2.6 Threat scenarios for increasing attacker capabilities based on the
acquired knowledge about the spoofed sender: (a) the attacker
has no information about the sender, (b) the attacker has access
to emails received from the sender’s domain and, (c) the attacker
has access to one or more emails from the real sender. 26

2.7 ROC curves for the classification of legitimate emails versus
emails spoofed by attackers with different levels of knowledge. . 28

2.8 Area under the ROC curve as a function of the number of training
emails used to learn each sender’s individual profile. 29

xiv LIST OF FIGURES

2.9 Correlation between the linear SVM scores of the different groups
of traits. Weights are assigned to each trait by the algorithm
during training and indicate the influence of the trait in the
decision of the classifier. 30

2.10 Distribution of scores per group of traits as learnt by the linear
SVM classifier during training. 30

2.11 Example of email client interface presented to the user when an
email is detected as suspicious. 32

3.1 Example of formal elements in a function call graph 43
3.2 ESIL instruction categories and their corresponding bit in the

label assigned to each node. 44
3.3 Labeling example of a function from its code. Every opcode

belongs to a category, which is a associated to a certain bit in
the label. 45

3.4 Siamese architecture with structure2vec networks as function ϕW . 53
3.5 Probability distributions of the number of nodes in function call

graph, the number of nodes in a neighborhood in all graphs and
the average size of a neighborhood in a graph. 55

3.6 Evolution of the training and validation loss per epoch. 57
3.7 t-SNE representation of training and testing NH and S2VSN

embedded manifolds . 58
3.8 Clustering metrics obtained with KMeans as a function of the

cluster size K. 60
3.9 Multiclass performance metrics for a classification algorithms in

a multiclass classification setup. 61
3.10 Confusion matrices for each classification algorithm and embedding. 62
3.11 Anomaly detection performance as a trade-off between the outlier

detection rate and the inlier misdetection rate. Figure 3.11b
shows the behavior of the curves in Figure 3.11a in logarithmic
scale. 64

3.12 AUC achieved by the different classifiers and embeddings at
identifying each individual family as an outlier. 65

4.1 Exemplary STIX package for the “APT1” report by Mandi-
ant [97]. Note that several identifiers and XML elements have
been simplified for presentation. 75

4.2 Schematic overview of the Mantis architecture. 77

List of figures xv

4.3 Attributed graph for STIX package in Figure 4.1. 78
4.4 Computation of the simhash fingerprint of a fact. 81
4.5 Mean average precision (MAP) for queries of different complexity. 88
4.6 Total number of constructs and facts per family. 89
4.7 MAP for each family with best b and k = 20. 90
4.8 Scalability measurements respect to data size and fingerprint

computation time. 91
4.9 MAP for query objects of APT families and comparison with

baseline performance of standard search engines based on exact
strings matching. 92

List of tables

2.1 Statistics of email data used for evaluation. 22
2.2 Anti-spoofing techniques in our evaluation data and as reported

by the monitoring service BuiltWith. 25
2.3 Detection performance of our approach in different threat scenarios. 28

3.1 Malware families in the Microsoft Malware Classification dataset 55
3.2 Average and standard deviation values of performance metrics

for classifiers in Figure 3.9 . 61
3.3 Outlier detection rates for specific values of the inlier misdetec-

tion rate in the trade-off curves depicted in Figure 3.11 63

4.1 Example of flattened facts for an Observable. 77
4.2 Raw dataset indexed by Mantis. 83
4.3 Top results retrieved for an HTTP Observable of the Taidoor

family. 85
4.4 Top results retrieved for a fact value of the Taidoor family. . . . 86
4.5 Raw APT dataset indexed by Mantis. 90

A.1 List of behavior features. 106
A.2 List of composition features. 107
A.3 List of transport features. 108

Publications

The research presented in this thesis is structured in three blocks that propose
solutions for the phases of detection, analysis and response to targeted attacks.
Each of these chapters draws on research introduced in the following papers
respectively:

Reading Between The Lines: Content-Agnostic Detection of Spear-Phishing
Emails. Hugo Gascon, Steffen Ulrich, Benjamin Stritter and Konrad
Rieck. Proc. of the 21st International Symposium on Research in Attacks,
Intrusions and Defenses (RAID) [54].

Structural Detection of Android Malware using Embedded Call Graphs.
Hugo Gascon, Fabian Yamaguchi, Daniel Arp, Konrad Rieck. Proc. of the
2013 ACM Workshop on Security and Artificial Intelligence (AISEC) [56].

Mining Attributed Graphs for Threat Intelligence. Hugo Gascon, Bernd
Grobauer, Thomas Schreck, Lukas Rist, Daniel Arp and Konrad Rieck.
Proc. of the 7th. ACM Conference on Data and Applications Security
and Privacy (CODASPY) [52].

During the completion of this thesis, the expertise developed in tangential
problems to the topic of this dissertation has enabled the author to contribute
to the fields of mobile security, reverse engineering of network protocols, model-
based fuzzing and vulnerability discovery. In particular, specific contributions
are discussed in the following publications. Note that while the results of these
publications are not part of this dissertation, they are referenced in the text
when a relevant link between this work and the ideas proposed in these papers
is established.

xx Publications

Fingerprinting Mobile Devices Using Personalized Configurations. An-
dreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck and Felix Freil-
ing. Proc. of the 16th Privacy Enhancing Technologies Symposium
(PETS) [88].

Pulsar: Stateful Black-Box Fuzzing of Proprietary Network Protocols.
Hugo Gascon, Christian Wressnegger, Fabian Yamaguchi, Daniel Arp and
Konrad Rieck. Proc. of the 11th EAI International Conference on Security
and Privacy in Communication Networks (SECURECOMM) [55].

Automatic Inference of Search Patterns for Taint-Style Vulnerabilities.
Fabian Yamaguchi, Alwin Maier, Hugo Gascon and Konrad Rieck. Proc.
of the 36th IEEE Symposium on Security and Privacy (S&P) [157].

Continuous Authentication on Mobile Devices by Analysis of Typing Mo-
tion Behavior. Hugo Gascon, Sebastian Uellenbeck, Christopher Wolf, and
Konrad Rieck. Proc. of the 2014 GI Conference “Sicherheit” (Sicherheit,
Schutz und Verläzsslichkeit) [53].

Drebin: Efficient and Explainable Detection of Android Malware in Your
Pocket. Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon
and Konrad Rieck. Proc. of the 2014 Network and Distributed System
Security Symposium (NDSS) [4].

Chucky: Exposing Missing Checks in Source Code for Vulnerability Dis-
covery. Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, Konrad
Rieck. Proc. of the 20th ACM Conference on Computer and Communi-
cations Security (CCS) [158].

Learning Stateful Models for Network Honeypots. Tammo Krueger, Hugo
Gascon, Nicole Krämer and Konrad Rieck. Proceedings of the 2012 ACM
Workshop on Security and Artificial Intelligence (AISEC) [87].

01

Introduction

The accelerating evolution of technology and our boundless search for con-
nection, entertainment and efficiency have paved the way for technological
companies to pervade every aspect of human activity in the first decades of
the twenty-first century. The outcome is a hyperconnected world [153] where
almost all information is accessible trough networks and computing systems
and where every piece of data resulting from interactions between systems and
people is digitized, analyzed and stored, regardless of how sensitive. The strong
push for digitalization leaves nothing untouched as new services and platforms
are made available everyday. Critical infrastructures are plugged online and
smartphones stock all traces of a person’s behavior in a single device.

At the same time, such a global information-based ecosystem has enabled
criminals to carry out their activities with the same mass-reach and efficiency
that legit ventures benefit from [see 17, 41]. From the exploratory experiments
of the eighties and nineties [117] to the dystopic scenarios of today [159, 160]
and led by the opportunity to access a highly profitable market with a low entry
barrier, criminals have adopted more specialized roles and steadily improved
the sophistication of their tactics. Almost every strain of traditional crime
has found its niche in the Internet space. Acquiring technological expertise is
thus key for criminals to become effective threat actors and maintaining their
competitive advantage over other criminals and, specially, over the security
community.

2 Introduction

As a consequence, security researchers have helplessly witnessed how at-
tackers have thrived through increasing professionalization and how their
motivations to vulnerate networked systems have evolved from pure financial to
geopolitical [81]. Despite years of research and improved security mechanisms,
the trove of sensitive data held by networked systems makes the potential re-
wards for persistent attackers even higher and the arms race between attackers
and defenders has entered a new phase with the emergence of highly specialized
threat actors. Backed by organizations or nation-states, such adversaries invest
large resources into attacking much more selective targets with the goal of
achieving economic but also political, or strategical gains. Such is the case of
attackers involved in industrial espionage [e.g. 41, 103, 30] or the gathering of
classified intelligence, sabotage and political repression, activities performed
often by some authoritarian regimes [see 113, 102, 33, 66, 101, 40, 109].

Contrary to the logic of mass-oriented criminal markets, such actions are
characterized by stealthy operations and performed by skilled groups with
plenty of resources at their disposal, making the confident attribution of an
attack almost impossible. These groups, often sponsored by nation-states, are
organized in specialized subdivisions within a military or intelligence hierar-
chy and perform structured work in vulnerability research and exploitation,
information gathering, maintenance of infrastructure or purely offensive tasks,
such as sabotage or support to further extend attacking capabilities [81]. For
instance, by stealing signed certificates that allow targeted malware to be
installed stealthily.

In this scenario, the paradigmatic asymmetry between attackers and defend-
ers in computer security grows even larger, creating minimal incentives for the
dominant actors to disengage from an escalating global conflict that is being
kept out of sight from the general public. Furthermore, the high prices paid
for zero-day exploits by actors everywhere establish a highly profitable market
alternative to responsible disclosure, leaving critical vulnerabilities unpatched
and being ultimately most detrimental to civil society.

As a consequence and without diminishing the importance of other forms
of organized social, political or economic action, there exists an acute need for
technical research into open-source, decentralized and collaborative defensive
mechanisms. Solutions that, given the complexity of the problem, must nec-
essarily address the range of issues faced by security analysts from multiple
perspectives.

1.1 Targeted Attacks 3

Therefore, in this thesis, we aim at designing a holistic approach against
targeted attacks by addressing the challenges encountered in each phase of a
comprehensive defense strategy: detection, analysis and response. As we will
see, the particularities of targeted attacks defy traditional defenses and ask for
innovative approaches that can benefit from the large amount of data generated
by systems and their interactions. Accordingly, we put special emphasis in
this work on the opportunities created by pattern recognition and machine
learning techniques and focus on problems whose solutions achieve the best
results through modern data analysis. Thus, we first need to understand how
exactly targeted attacks are different and what specific challenges they pose.

1.1 Targeted Attacks

Targeted attacks are usually labeled by the media as advanced persistent threats
(APT). However, some researchers and vendors require the attack to meet
certain criteria of customization, duration, objectives and selection of targets,
to be recognized as such [e.g. 29, 138]. In this thesis, we will always refer to
targeted attacks that manifest the standard attributes of an APT and, therefore,
use both terms interchangeably.

In general, targeted attacks are mostly defined in opposition to the charac-
teristics of non-targeted attacks. While threat actors behind targeted attacks
often make use of classic techniques such as malicious emails, compromised sites,
exploits and malware, the main differences stem, however, from the amount of
resources available and thus in their implementation of the attack.

For example, while financial gain represents the main incentive for criminal
organizations in non-targeted attacks, actors involved in APTs are also moti-
vated by industrial espionage, sabotage or intelligence gathering. Accordingly,
attackers select their targets carefully among governments, businesses, NGOs,
organizations, critical infrastructure, academia and research institutions. In
addition, threat actors are able to invest large resources into developing their
own techniques and exploitation methods which are tailored to a specific target
and improved over time to maximize their efficacy. This implies that, while a
non-targeted attack is typically an isolated incident, APTs are conducted in
campaigns. Thus, after selecting and compromising a target, attackers iterate
over their own methods and follow a strategic approach to obtain and maintain
long-term persistence in the target’s infrastructure. By focusing on covering
their tracks, attackers stay in control of the system of the victim and stealthily

4 Introduction

extract any new sensitive information from the network with little risk of being
detected. It could be said that, while non-targeted attacks are broad in scope
and shallow in sophistication, targeted attacks are narrow and deep.

This characterization is based on the observation, particularly by security
vendors [29, 105, 134], that threat actors follow a distinctive set of stages
during a persistent targeted attack. While the boundaries of these stages may
differ between authors, most steps taken during a targeted operation can be
categorized in the following phases:

• Incursion: In this initial phase, attackers gather information about
the target, whether from public sources or trough traditional covert
methods. This information is used to lure the victims into executing or
loading malicious code, that often exploits one or more vulnerabilities
and then establishes communication with a command-and-control server.
In contrast to common attacks, where automation can maximize the gain
of the attacker, these initial steps are typically taken manually and are
highly focused on each specific victim.

• Discovery: Throughout this phase, attackers move laterally throughout
the network and map the organization resources in search for unprotected
services, as well as more vulnerable nodes. The exploitation of additional
systems may require to download extra tools to the victim’s network
and/or further research.

• Capture: During this phase, attackers take steps to obtain persistence in
the network by, for instance, disabling software auto-update mechanisms.
Moreover, attackers may install rootkits in the target infrastructure allow-
ing them to control the functioning of hardware systems and capturing
information as it traverses the network.

• Exfiltration: In the final phase, attackers extract the collected data
through diverse stealthy mechanisms, for instance, through ordinary
services (e.g. email, web) on top of encrypted channels. As part of the
ongoing operation, the exfiltrated data is analyzed by the attackers to
improve their tactics.

As for academic literature, whereas no formal definition of targeted attacks
exists, most authors agree on a similar set of traits. For instance, Blond et
al. [11] broadly define these attacks as low-volume, with a focus on socially

1.1 Targeted Attacks 5

engineered communication whose goal is to deceive specific victims into installing
malware. In the dataset on which they base their analysis, this communication
is exclusively performed through email, and malicious archives or documents
are the main mechanism of exploitation. Email represents, thus, one of the
most effective vectors for social engineering and the main point of entry in
targeted attacks, as more than 90% of successful compromises begin with a
specially crafted email [60]. Furthermore, email has become a major target
itself, as plenty of strategical and sensitive information is regularly discussed
through emails in an informal way [99].

If we take on understanding the origins of APTs, we notice how targeted
emails were the first evidence pointing at the appearance of a new strain
of advanced intrusions. As Hutchins et al. [72] describe, back in 2005, the
U.K. National Infrastructure Security Co-ordination Centre (UK-NISCC) and
the U.S. Computer Emergency Response Team (US-CERT) issued technical
alert bulletins describing targeted, socially engineered emails including trojan
documents with the goal of compromising the systems of high-level victims and
exfiltrating sensitive information. However, some researchers date the origins
of targeted intrusions as early as 1996, with the Moonlight Maze operation
pioneering a still nascent field by, possibly, the oldest publicly acknowledged
state actor [107]. From that time onwards, a substantial amount of ongoing
operations has been uncovered as a result of an evolved threat landscape and
the appearance of numerous professionalized actors (for a detailed list see [90]).
On top of that, attackers have now access to a deluge of public information
about targets, thanks to social media and the explosion of online services, which
makes constructing effective deceptions easier than ever.

Moreover, nation-states do not have a monopoly on this type of operation.
Criminal groups are starting to implement similar techniques and selecting the
same type of targets with the goal of selling the stolen information, including to
governments. As Pritchard aptly remarks, the distinction between “economic
intelligence” and industrial espionage can be a fine one [114]. Ultimately, the
main reason behind the increase in targeted attacks lies in the complexity of
confidently attributing an operation and the possibility of plausible deniability,
which ensures that offensive operations are rarely met with a direct response
or lawful retribution.

From a defender’s perspective, targeted attacks introduce a series of chal-
lenges that can be hardly addressed with traditional approaches. In the first
place, a threat actor with large resources can implement social engineered

6 Introduction

methods that appear totally inconspicuous to any user. Additionally, the char-
acteristic low volume of a targeted attack does not allow for suspicious traits to
be discerned by standard monitoring systems and the use of unknown vulnera-
bilities and tailored malware prevent detection systems, based on signatures
and heuristics, from being effective.

While some technical solutions to these issues have been proposed such as,
strong network segmentation, authentication infrastructure, data loss prevention
schemes, or standards for documenting and sharing threat intelligence, building
effective approaches to thwart persistent targeted attacks remains one of the
most challenging problems faced by the security community.

1.2 Defense against Targeted Attacks with Machine Learning

In the last two decades, the performance of machine learning and pattern
recognition algorithms has experienced an impressive improvement. The in-
creasing availability of data and the declining prices of computational resources,
have fueled research in traditional and well established fields, such as image
recognition and natural language processing. However, the implementation of
out-of-the-box algorithms into open-source frameworks have paved the way for
academia and industry to find new potential applications for machine learning
techniques.

In the security field, where the collection of relevant threat data has always
represented more of a challenge, security researchers have still benefited from the
general improvements brought to learning algorithms, and these have emerged
as a promising set of tools to address some of the challenges introduced by
targeted attacks. As we have discussed, motivated threat actors invest time
and resources into customizing their tactics for each one of their targets.
Consequently, signatures and rule based approaches, as well as techniques based
on heuristics, fail to generalize and capture the precise traits that would allow
to block or characterize an infrequent behavior. Machine learning algorithms,
on the contrary, build mathematical models based on existing examples but
can potentially achieve high accuracy at identifying combinations of attributes
that were not present in the training data.

Accordingly, and given the low volume of targeted attacks, the security
community has developed standard formats and protocols to share relevant
threat intelligence in the form of large amounts of data that can also be used
to train machine learning algorithms.

1.2 Defense against Targeted Attacks with Machine Learning 7

TARGETED AND UNIQUEMachine learning, advanced
sandboxing, threat intelligence 1%

9%

90%

SOPHISTICATED ATTACKSHeuristics and behavior
analysis, reputation

GENERIC MALWARE
AND COMMON THREATS

Signatures and rule
based approaches

Fig. 1.1 Distribution of threats by sophistication and their corresponding defense
mechanisms [89].

Therefore, machine learning, in combination with advanced sandboxing and
threat intelligence, emerges not as a substitute for traditional approaches which
are effective at mitigating low sophisticated threats like generic malware and
phishing, but as a complement to assist the analyst detect and understand the
most sophisticated adversaries in a predictive manner (see Figure 1.1).

Academic security research have proposed numerous solutions to address
diverse security problems from a defense perspective by taking advantage of
machine learning and pattern recognition. However, it is not until recently that
researchers have begun proposing specific solutions to address the challenges
imposed by targeted attacks. First, by performing exploratory analyses to
understand the nature of this type of threats [e.g. 66] and assessing the response
of users to social engineering [19, 151]. Next, by focusing on specific technical
solutions and designing approaches for which learning algorithms can provide a
vantage point for the defenders.

For instance, spear-phishing emails, being the most common entry vector,
have received a lot of attention. Given that these emails attempt to imperson-
ate known senders [11], some researchers have focused on blocking messages
through behavior modeling and data analysis [e.g. 141, 2, 70]. Moreover, other
researchers have suggested that learning based approaches can provide an
effective solution to help attributing malicious code to a specific nation-state
during the investigation of an APT attack [104, 130].

While most of these approaches provide interesting solutions to important
problems, there exists plenty of room for research to overcome some of their

8 Introduction

limitations and, most importantly, an urgent need to provide solutions that help
security analysts address the threats of targeted attacks in a comprehensive
manner across all their phases and through continuous defense.

1.3 Thesis Contribution

In this thesis, we aim at providing a holistic strategy for defenders against
targeted attacks spanning the phases of detection, analysis and response. More-
over, we aim at designing solutions that can take advantage of existing patterns
in data by relying extensively on learning algorithms. Consequently and seen
from a longitudinal perspective, the methods proposed in this thesis share a
common technical pattern. As shown in Figure 1.2, each one of the approaches
proposed in each phase is based on the formalization of a particular abstraction
which is created to let pattern recognition and machine learning techniques
operate on the structured data of the input problem space.

AnalysisDetection

Response
Input Space
 Binary Code
Data Abstraction
 Graphs
Techniques
 Clustering
 Classification
 Anomaly Detection

Input Space
 Email Headers
Data Abstraction
 Strings
Techniques
 Classification
 Anomaly Detection

Input Space
 XML
Data Abstraction
 Graphs
Techniques
 Graph Similarity Analysis
 Information Retrieval

Fig. 1.2 Phases of our holistic strategy against targeted attacks and technical
schema of each one of the corresponding solutions proposed in this thesis.

In particular, we address the problems of identifying spear-phishing emails
in different adversarial settings (detection), performing malware triage at scale
(analysis) and facilitating the authoring, sharing and correlation of threat
intelligence (response).

1.4 Thesis Organization 9

In the course of this thesis, we propose solutions for each one of these
problems by introducing a series of techniques and methodologies that are
made possible through the following specific contributions:

• Content-agnostic identification of email senders. We propose a
series of traits to characterize email senders without relying on the
textual content of their messages. Then, by combining concepts of
machine learning classification and anomaly detection, and based solely
on header data observed at the mailbox of a recipient, we devise an
approach to identify spoofed emails as a proxy for detecting spear-phishing
attacks with high accuracy and against attackers with increasing resources
(Chapter 2).

• Structural embeddings and triage of binary code. We introduce
a generic representation for binary code based on function call graphs
and two complementary approaches for graph embedding: an explicit
high dimensional mapping that allows for explainability and an implicit
low dimensional feature map learned through a deep neural network
architecture. These vector representations enable us to take advantage
of machine learning algorithms for clustering, classification and anomaly
detection in the graph space as means to triage x86 malware based on
the structural properties of its binary code (Chapter 3).

• Unified representation and correlation of threat intelligence. We
introduce a unified representation for threat intelligence standards based
on attributed graphs and design a similarity algorithm that operates on
its structural representation. Then, we incorporate these concepts into an
open-source platform for threat intelligence to devise an information re-
trieval system that is capable of retrieving related reports given individual
observations from security incidents (Chapter 4).

1.4 Thesis Organization

This thesis consists of five chapters, from which four of them remain. In each
of the first three chapters, we focus on specific challenges faced by the analyst
during the detection, analysis and response phases of a comprehensive strategy
against targeted attacks. Accordingly, we propose a series of complementary so-
lutions to the problems of spear-phishing emails, malware triage and correlation
of threat intelligence that are designed to be implemented on top of each other

10 Introduction

and, therefore, recommend the reader to proceed by reading the chapters in
their standard order. Nevertheless, the experimental setup within each chapter
has been designed independently and its discussion can be read individually
without loss of context. The last chapter summarizes and concludes this thesis.

Chapter 2 is concerned with the detection phase. In this chapter we address
the problem of detecting spear-phishing attacks. In particular, we assume that
resourceful actors can always craft seemingly authentic messages and propose
and evaluate an innovative method to identify spoofed emails without relying
on their textual content.

Chapter 3 addresses the analysis phase. In this chapter we acknowledge
malicious code as a source for threat intelligence and focus on the problem
of establishing a link between new malware samples and known families. In
particular, we introduce a method based on the structural analysis of binary
code and derive graph representations that enable the analyst to perform
malware triage effectively at scale by means of machine learning algorithms.

Chapter 4 is concerned with the response phase. In this chapter we introduce
a platform developed in collaboration with Siemens CERT for authoring and
collecting standardize threat data and, most importantly, a method that enables
the correlation of heterogeneous information based on a generic attributed
graph representation for threat intelligence.

Chapter 5 concludes this thesis. In this final chapter, we summarize the
main results presented in this work, draw overall conclusions of our proposed
approaches and experiments and discuss possible directions for future research.

02

Detection

Emails are a prevalent attack vector for infiltrating companies and organisa-
tions. As documents and links are regularly exchanged via email within and
across these environments, they are a perfect vehicle for transmitting malicious
payloads to a victim [74, 24]. To increase their success, attackers specifically
target individual members of an organization using carefully crafted emails—a
technique referred to as spear-phishing. For example, an attacker may pick
an appropriate topic, use correct wording and spoof a well-known sender to
convince the recipient of the veracity of an email [61]. These targeted emails
are more advanced than regular phishing or spam campaigns, as they are indi-
vidually adapted to the environment and behavior of the victim. Consequently,
there exist only few similarities between different targeted emails which makes
it hard to construct effective defenses. As a result, more than 90% of targeted
attacks begin through spear-phishing [60].

Although users are increasingly aware of the risk they are exposed to,
they have to rely on hints provided by the email client to detect spoofed
content. In the default setup, several clients, like Microsoft Outlook and
Mozilla Thunderbird, display only little information for identifying the sender,
such as the From and Reply-To fields. Emails from unknown senders can be
marked accordingly and specifically dealt with but these and other fields can be
forged, making it hard even for a skilled user to distinguish legitimate content
from well-crafted attacks [151, 19]. While inconsistent combinations of these

12 Detection

fields can be easily detected and used to notify the user of a potential threat,
the situation becomes challenging if all fields are correctly adapted by the
adversary, such that the email appears totally legitimate in its content as well
as its headers.

Common anti-spoofing techniques such as the Sender Policy Framework [SPF,
125], DomainKeys Identified Mail [DKIM, 124] and the more recent Domain
Message Authentication Reporting & Conformance [DMARC, 126] can help
to validate the sender of an email in this situation. Similarly, techniques for
digital signing of emails, such as PGP [121] and S/MIME [123], enable to verify
the sender. Unfortunately, these techniques are still not widely adopted in
practice. While we notice several email domains in our evaluation data with
SPF entries, less than 5% of the collected 700.000 emails contain corresponding
DKIM headers or even digital signatures. Moreover, all of these techniques
need to be implemented at the sending side, which renders it difficult to protect
from spoofing if not all communication parties adopt the technology [108, 51].
Therefore, given an attacker that is able to exactly match the address of a
known sender, the user is unable to detect the attack and might be tricked into
opening a malicious file or link.

As a result, there is a demand for alternative approaches that are able to
protect users from highly targeted spear-phishing emails in the threat landscape.
These approaches need to address three major challenges: First, they need to
operate under the assumption that a skilled adversary can almost arbitrarily
forge the data within emails. Second, these approaches must not depend on
changes at the sending side and operate at the recipient only. Third, they need to
account for the large variability of textual content used in spear-phishing attacks
that is hard if not impossible to identify by a detection system. A method
recently proposed by Ho et al. [70] focuses, for instance, on the identification
of credential phishing and is designed to identify attacks from unseen senders.
However, their approach ignores the problem of address spoofing and requires
the victim to interact with the targeted email by clicking on a link.

In this chapter, we tackle these challenges and propose an approach that is
able to verify, without relying on its content, if an email matching the address of
a known sender truly originates from its legit source. Our method builds on the
observation that a sender leaves characteristic traits in the structure of an email,
which are independent from textual content and often persist over time. These
traits significantly differ between senders and reflect peculiarities of the user
behavior, email client and delivery path, such as particular header combinations,

13

encoding formats and attachment types. Based on this observation, we develop
a detection method that receives the mailbox of a user as input and applies
machine learning techniques to generate profiles for all senders in the mailbox,
even if only a few emails are available. These profiles provide a content-agnostic
view on the sender and enable us to spot spoofed emails as deviations from the
learned profiles.

We empirically evaluate our approach on a collection of 92 mailboxes from
twelve different domains, covering over 700,000 emails from 16,000 senders.
We demonstrate that our method can discriminate thousands of senders in
one mailbox and enables identifying spoofed emails with 90% detection rate
and less than 1 false positive in 10,000 emails. Moreover, we can show that
the individual traits of a sender observed at the recipient’s end are hard to
guess and spoofing attempts only succeed if entire emails of the sender as
delivered to the recipient are known to the adversary. Although our approach
cannot generally rule out spoofing due to leaked emails, it considerably raises
the bar for targeted attacks and—in absence of widely deployed server-side
solutions—provides an effective protection for companies and organisations
targeted by spear-phishing attacks.

In summary, we make the following contributions:

• Characteristic sender profiles: We identify traits which enable us
to characterize the senders of email without relying on textual content.
The resulting profiles are expressive enough to distinguish thousands of
senders while accounting for the diversity of individual emails.

• Detection of spear-phishing emails: We demonstrate how the learned
profiles of senders can be used for identifying spoofed emails and help to
mitigate the risk of spear-phishing attacks in absence of stronger server-
side solutions in practice.

• Evaluation and evasion experiments: We evaluate the performance
of our method through a series of increasingly adverse scenarios where
the attacker becomes stronger by obtaining more information about the
target and building a better model of the spoofed sender.

The rest of this chapter is organized as follows: In Section 2.1 we present
traits observable in the structure of emails and describe in Section 2.2 how
these can be used to construct profiles for senders. We evaluate the resulting

14 Detection

detection method in Section 2.3 and discuss its impact and limitations in
Section 2.4. Related work is reviewed in Section 2.5 and Section 2.6 concludes
the chapter.

2.1 Traits in Email Structure

The identification of spoofed emails is a challenging problem of network security.
An attacker can almost arbitrarily manipulate the structure and content of
emails, ranging from a trivially spoofed From field to carefully crafted sequences
of fake Received headers [see 122]. In absence of exact detection techniques in
practice, such as DKIM and DMARC, it is thus hard to discriminate legitimate
from forged emails.

The freedom available for constructing a spoofed email, however, may also
turn against the attacker and pose an obstacle. We argue that it is non-trivial
to mimic an email from a particular sender without detailed knowledge and
that minor irregularities in the email structure may provide valuable clues for
identifying spear-phishing attacks. If the attacker has access to emails from a
sender known to the victim, she can simply copy the email structure, yet if this
information is not fully available, she needs to make a good guess and hope
that the forged structure mimics the original communication well.

For uncovering such forgeries, we identify three groups of traits that can
characterize the sender of an email: First, when writing an email the sender
introduces behavior features that reflect individual preferences and peculiarities.
Second, the email client generates composition features, identifying the particu-
lar client and its configuration. Third, the delivery of an email leaves transport
features that capture details of the sending and receiving infrastructure. In
the following, we describe these groups of traits in more detail and use the
simplified email in Figure 2.1 as a running example through out this section.

2.1.1 Behavior Features

When a user writes an email, several of her individual preferences can manifest
in the structure of the email—aside from her writing style and habits [44, 141].
For example, some senders are frequently including recipients using the CC

header, whereas others avoid this and prefer to address all recipients directly
using the To field. Similarly, senders differ in the type and amount of files
they are attaching to emails in conversations. While some of these features are

2.1 Traits in Email Structure 15

1 Return-Path: <john@doe.com >
2 Received: from [93.184.216.34] (HELO example.com)
3 by example.com with ESMTP id 69815728;
4 Tue , 16 May 2017 14:06:48 +0200
5 To: Jane Dee <jane@example.com >
6 Date: Tue , 16 May 2017 14:00:02 +0200
7 Message-Id: <20170516133920.23212 @doe.com >
8 Subject: Security Conference
9 From: John Doe <john@doe.com >

10 In-Reply-To: <1405590537 $56fe@example.com >
11 MIME-Version: 1.0
12 Content-Type: multipart/mixed; boundary =" boundary"
13
14 –boundary
15 Content -Type: text/plain
16
17 FYI , interesting conference: https :// tinyurl.com/ktmqtgh
18
19 –boundary
20 Content-Type: application/octet -stream; name="foo.exe"
21 Content-Transfer-Encoding: base64
22
23 TVqQAAMAAAAEAAAA //8 AALgAAAAAAAAAQAAAAAAAAAAKCkdyZWV0aW5ncyw
24 gUmV2aWV3ZXIhCsKvXF8o44OEKV8vwq8KCg ==
25 –boundary–

Fig. 2.1 Simplified email as running example.

volatile and change between different contexts, other features may persist over
time and provide a first basis for constructing a profile of the sender.

For our analysis, we identify 13 feature types that characterize the behavior
of a sender in the structure of an email, including

1. the type, number and order of attachments, for example when multiple
documents are exchanged,

2. the relation to other emails and recipients, for example in form of
References and In-Reply-To headers,

3. digital signatures and certificates attached to the email as well as corre-
sponding PGP and S/MIME fields, and

4. the amount of text in the main part and the amount of quoted text in
email responses.

A complete list of all 13 features is provided in Table A.1 of the appendix.
Note that the cardinality of these features differs, where some may appear

16 Detection

multiple times in an email, such as the type of attachments and others only
once, such as the depth of the MIME structure. As an example, the email
in Figure 2.1 shows the attachment of an executable file (line 20) and the
reference to a previous conversation (line 10)—two features that are rarely used
in combination.

2.1.2 Composition Features

The second source for traits in the structure of an email is the mail user agent
(email client) that converts the provided addresses, text and attachments into a
suitable format for delivery. As emails have been originally restricted to ASCII
characters, there exists a wealth of encoding schemes for converting binary
data to a compatible ASCII representation [e.g., 118, 119, 120]. These schemes
are selected by the email client and often slightly vary in implementation, thus
providing features that characterize the composition of an email. For example,
the Base64 encoding [120] does not enforce a fixed text length and thus clients
differ in the formatting of the corresponding text blocks. Similarly, there exists
several minor variations in the construction of multi-part MIME messages that
provide clues about the client and its configuration.

For our analysis, we identify 22 feature types that capture peculiarities of
the email client and its configurations, including

1. the type, order and syntax of common headers, such as the From, To,
Subject and Message-Id headers,

2. the type, order and syntax of headers in MIME parts, including fields
like Content-Type and Content-Disposition,

3. the syntax of address fields, such as the formatting and quoting of names
and email addresses,

4. the encoding of international characters in the subject field, in address
fields and filenames,

5. the type and location of textual content, such as HTML and plain parts
in the email,

6. client-specific behavior, such as the length of line breaks, missing and
superfluous encodings of characters,

2.1 Traits in Email Structure 17

7. individual details of the MIME structure, such as the depth and the order
of different MIME parts, and

8. the structure of the Message-Id header and the structure of MIME bound-
aries.

A complete list of the 22 composition features is provided in Table A.2 of
the appendix. While these features alone are clearly not sufficient to identify
attacks, in combination with behavior and transport features they sharpen
the view on a sender and thereby obstruct the spoofing of email addresses.
As an example, the email in Figure 2.1 shows a unique order of the From, To
and Subject field (line 5–9) which indicates a rare email client. Furthermore,
the Base64-encoded attachment is formatted using a 60 character line length
(line 23).

2.1.3 Transport Features

A third group of traits can be attributed to the delivery path of an email. As
the email moves from the sending to the receiving mail transport agent, often
passing multiple hops, different headers are added to the structure. These
headers describe the individual mail hops in form of Received headers and
provide information about available delivery features, such as delivery protocols,
TLS or the time zone of the mail server. These headers and features, again,
generate a series of traits that can help to distinguish different senders and
spot irregularities in the delivery process.

Although an attacker can insert fake headers prior to the delivery of an
email, it is not possible to change or remove headers added by hops on the
delivery path. As a consequence, an attacker can only forge these headers by
either connecting directly to the receiving server or, alternatively, attempting
to inject emails early into the delivery process—a tractable but non-trivial task
in practice, as it would require having access to the same delivery infrastructure
as the sender that the attacker is trying to spoof.

We identify 11 transport features that enable us to reconstruct the delivery
path of an email and spot deviations from past emails of the same sender.

18 Detection

These features include

1. the number and order of Received headers, where each hop is represented
by the hash of its hostname,

2. the path of time zones from the first to the last hop during the delivery
process,

3. the delivery protocols and TLS features available in some Received head-
ers,

4. the validity of DKIM records added by the servers and their relation to
the claimed sender of the email, and

5. non-standard headers added by spam filters or anti-virus services during
the delivery of the email.

Table A.3 in the appendix provides a list of all 11 transport features. As
an example of traits introduced by the delivery process, the email in Figure 2.1
contains a detailed Received header (line 2–4). This header defines the mail
hop, delivery protocol and delivery time. This information is available with
any mail passing the hop and thus can leak to the attacker. However, we show
in Section 2.3 that knowledge of transport features alone is insufficient to evade
our detection method and that the attacker needs access to original emails
delivered to the recipient for successfully spoofing a sender.

2.2 Content-Agnostic Spear-Phishing Detection

Equipped with three groups of traits for characterizing the sender of an email, we
are ready to develop a corresponding detection method using machine learning
techniques. The application of learning methods spares us from manually
constructing detection rules for each of the senders and thereby allows for
scaling our approach to thousands of senders, as we demonstrate in Section 2.3.

2.2.1 Feature Extraction and Embedding

The proposed groups of traits provide detailed information about the structure
of emails from each sender in the recipient’s mailbox. In order to learn a profile
from the traits, however, we require a numerical representation that can be
used in combination with common learning methods. As a remedy, we apply

2.2 Content-Agnostic Spear-Phishing Detection 19

the concept of a bag-of-words model—a technique originating from information
retrieval [133] and natural language processing [78, 77]—and adapt it to the
traits extracted from the structure of emails.

To this end, we represent each of the extracted traits as a feature string
and build a joint set F that comprises all observable strings from the three
groups of traits:

F := F behavior ∪ Fcomposition ∪ Ftransport. (2.1)

Table A.1, A.2 and A.3 in the appendix show some of these feature strings
as examples in the rightmost column.

Making use of this set F , we define an |F |-dimensional vector space that
takes values 0 or 1 in each dimension. Each email e is then mapped to this
space by building a vector φ(e), such that for each feature f extracted from e

the corresponding dimension is set to 1, while all other dimensions are set to 0.
Formally, this map can be defined for all emails M as

φ : M −→ R|F |, φ(e) 7−→ (If (e))f∈F (2.2)

where the auxiliary function I simply indicates whether the feature f is present
in e, that is,

If (e) =




1 if email e contains feature f

0 otherwise.
(2.3)

The resulting binary vector space R|F | allows us to represent each email as
a vector of the contained traits of its sender. In the following, we describe how
we use this representation to train a machine learning classifier that, based
on these features, is able to assign each email to its corresponding sender and
indicate possibly spoofed emails.

2.2.2 Model Learning and Classification

Several learning methods can be applied for classifying data in a vector space. To
operate in our setting, however, a learning method needs to address additional
requirements: First, the method has to be able to operate in a high-dimensional
vector space, as the set F may cover thousands of different traits. Second, the
methods needs to be capable of learning a classification model, even if only
very few training data is available, such as a couple of emails only.

20 Detection

In view of these requirements, we select the following two learning methods
for our detection approach: (a) a k-nearest-neighors classifier (kNN) that can
generate good classification results with very few training data and (b) a multi-
class support vector machine (SVM) which is known for effectively operating
in high-dimensional vector spaces [see 42].

Sender 3

Sender 2

Spoofed Sender 2

Sender 1

k = 8

(a) kNN classifier

Sender 3

Sender 2

Classifier 1

Spoofed Sender 2

Classifier 3

Sender 1

Classifier 2

(b) SVM one-vs-all classifier

Fig. 2.2 Schematic overview of the detection: A classifier is used to identify
emails as spoofed when a mismatch between the output of the classifier and
the origin sender address occurs.

K-Nearest Neighbors Classifier The kNN algorithm is a simple yet effec-
tive learning method for classification. It computes the distance between a test
sample and all existing samples in a training set and makes a decision through
voting on the labels of its k-nearest samples after applying a weight function
(see Figure 2.2a). Such instance-based learning algorithms do not construct
an explicit learning model and thus can be applied even if only a single email
is available for a sender. For our approach, we label each feature vector with
the address of the originating sender address. When a new email is received,
we compute the distance between this sample and the feature vectors of all
existing emails as follows

d(ex, ey) =
∣∣∣∣φ(ex)− φ(ey)

∣∣∣∣
1
=
∑

f∈F

| If (ex)− If (ey) | , (2.4)

where d corresponds to the Manhattan or L1 distance. A mismatch between
the incoming sender address and the prediction of the classifier is then flagged
by our method as a spoofing attempt.

The advantage of making predictions with very few training data, however,
comes at a price. The distance between each new email and all existing emails

2.2 Content-Agnostic Spear-Phishing Detection 21

needs to be computed before making a decision, which is computationally
expensive on large mailboxes. Fortunately, this problem can be addressed in
two ways: First, one can implement the classifier using special data structures
for reducing the number of distance computations, such as ball trees and cover
trees [10]. Second, if the number of training instances reaches a certain limit,
one can simply switch to another learning method, such as a support vector
machine or, when possible, sample the training data according to a distribution
that maintains the classifier performance.

Multi-Class Support Vector Machines As second learning method, we
employ a linear multi-class SVM algorithm [46]. The algorithm computes
a series of maximum-margin hyperplanes that separate the emails from one
sender from the emails of all other senders (see Figure 2.2b). That is, given N

different senders, N hyperplanes are determined, each one of them represented
by a vector w ∈ R|F | and a scalar b in the vector space.

If a new email arrives, we simply determine the position to the learned
hyperplanes and pick the sender with the best match, that is, the largest
value of

h(e) = ⟨φ(e), w⟩+ b =
∑

f∈F

If (e) · wf + b. (2.5)

Note that this function can be computed efficiently, if the feature vector φ(e) is
sparse, as only non-zero dimensions If (e) contribute to the output. As a result,
we can compute h(e) in linear time in the number of traits |e| extracted from e

and the overall run-time for analyzing an email is O(N |e|). In contrast to the
kNN algorithm, the run-time for the prediction of a linear SVM is independent
of the size of the training set and thus this learning method is suitable if more
emails are available from particular senders [see 46].

To demonstrate the efficacy of our method, we assess in the following how
our proposed set of features is able to capture the differences between different
senders and then, evaluate the performance of our approach for detection of
spoofed emails on real data from a large set of recipient mailboxes.

22 Detection

2.3 Evaluation

We proceed to evaluate our detection method on a large dataset of real-world
emails. In particular, we are interested in studying the ability of our method
to characterize the sender of an email based on its structure and to identify
spoofed emails under different levels of knowledge of the adversary. Before
presenting these experiments, we first introduce our dataset (Section 2.3.1) and
define the corresponding attacker model (Section 2.3.2).

2.3.1 Evaluation Data

For our evaluation, we have gathered anonymized features extracted from 92
mailboxes from twelve different domains, including enterprise and commercial
email services. To evaluate the efficacy of our detection method, we require at
least one email for learning and one for testing from each sender. Consequently,
we discard all emails from senders that have sent only a single email. Our final
dataset comprises a total of 760,603 emails from 17,381 senders, where each
sender has authored at least two emails. These emails are described by a total
of 617,960 features extracted using the traits defined in Section 2.1. Table 2.1
provides an overview of the statistics of our evaluation data.

Table 2.1 Statistics of email data used for evaluation.

Basic statistics Total

Mailboxes 92
Emails 760,603
Senders 17,381
Features 617,960

Detailed statistics Min. Mean Max.

Emails per mailbox 2 8,267 50,924
Emails per sender 2 43 44,204
Senders per mailbox 1 279 2,144
Features per email 5 69 183
Emails per sender and mailbox 2 29 10,304

Figure 2.3 depicts in more detail how emails and senders are distributed
within our dataset. From Figure 2.3a and 2.3b we can see that over 50% of the
mailboxes in our dataset contain between 103 to 104 emails and between 102

to 103 different senders. This large corpus of emails provides a good basis for
evaluating the performance of our method. Depending on the applied learning
model, however, we require a minimum number of emails per sender and thus

2.3 Evaluation 23

not all senders might be available for training. Figure 2.3c shows the amount
of training data available to a learning method depending on the minimum
number of emails per sender. While for the kNN classifier all senders can be
used for evaluation, in the case of the SVM classifier, we need to restrict our
experiments to 46% of the data, as we require at least 5 emails for training.

10
1

10
2

10
3

10
4

10
5

Number of emails

0

5

10

15

20

25

M
ai

lb
ox

es
 (%

)

(a)

10
0

10
1

10
2

10
3

10
4

Number of senders

0

5

10

15

20

25

30

M
ai

lb
ox

es
 (%

)

(b)

10
0

10
1

10
2

10
3

Number of emails per sender

0

20

40

60

80

100

Tr
ai

ni
ng

 d
at

a
(%

)

 kNN classifier

 SVM classifier

(c)

Fig. 2.3 Overview of the evaluation data: (a) distribution of emails and (b)
distribution of senders in the 92 mailboxes; (c) training data available for
learning with varying emails per sender.

To prepare our experiments, we extract feature vectors from all emails in
our evaluation data. This may seem as an intractable task at first glance, as the
resulting vector space has over 600,000 dimensions. However, the majority of
these dimensions is zero and each email contains only between 5 to 183 features
(see Table 2.1). As a result, we can make use of efficient data structures for
operating with these sparse feature vectors [see 127].

As a sanity check whether our representation is suitable for learning a
classification, we first study how senders in a mailbox differ from each other
and then analyze how emails from a specific sender change over time. To this
end, we first calculate a simple statistic: For each sender, we compute the
average of its feature vectors and measure the distances between the resulting
17,381 mean vectors within each mailbox. We make use of the Manhattan
distance (L1 distance) for comparing the mean vectors. The distance can be
interpreted as the average number of features differing between the senders and
thus provides an estimate for the quality of extracted traits.

Figure 2.4 shows the distribution of the Manhattan distances between all
senders in each mailbox. It can be observed that most senders are separated
from each other by a distance larger than 40 on average. This demonstrates
that several of the extracted traits are highly specific and capture nuances of
the email structure suitable for discriminating the senders.

24 Detection

0 25 50 75 100 125 150 175 200
Average L1-distance between senders

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175
P

ro
ba

bi
lit

y

Fig. 2.4 Average distance between
senders

0 200 400 600 800 1000
Mails received from sender

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

A
vg

er
ag

e
fe

at
ur

e
dr

ift
 (%

)

Fig. 2.5 Feature drift over time

Multiple sources may introduce variability and noise into the email traits
of a sender, such as software updates, network configurations and changing
devices. We thus study how emails from an individual sender change over time.
In particular, we want to answer the question how many features change in
a new email when it is compared with existing emails from the same sender.
For this, we measure the Manhattan distance between each email received at a
certain point in time in a mailbox and all emails previously received from the
same sender. The average number of differing features is then presented as a
percentage of the feature space dimensionality.

Figure 2.5 shows that a slight feature drift exits. It can be observed how
the variability grows rapidly at first with the initial emails received from a
sender. However, when an increasing number of emails is received each class
becomes more compact and the average percentage of different features in a
new email decreases. Note that although individual profiles become more stable
during time, they also tend to differ considerably between senders as shown in
Figure 2.4.

As the final preparation step, we determine the presence of anti-spoofing
techniques in the 760,603 emails using corresponding email client and transport
features. Table 2.2 shows the percentage of emails in our dataset that contain
anti-spoofing techniques, where we additionally report statistics from the top
million web domains listed at the monitoring service BuiltWith [15]. Although
the adoption of SPF [125] has reached almost 40% by now, the overall im-
plementation of anti-spoofing techniques is still low in both data sources. In
particular, recent techniques, such as DKIM [124] and DMARC [126] are used
in less than 5% of the emails, thereby emphasizing the need for alternative
protection measures.

2.3 Evaluation 25

Table 2.2 Anti-spoofing techniques in our evaluation data and as reported by
the monitoring service BuiltWith.

Anti-spoofing technique Our data Top 1M [15]

SPF — 39.9%
DKIM 4.3% 0.1%
DMARC — 1.3%
PGP, S/MIME 0.88% —

2.3.2 Attacker Model

In the absence of anti-spoofing techniques, a skilled adversary is able to forge
most of the data contained in an email. However, we argue that, by inferring a
sender profile based on traits of the email structure, an attacker is forced to
mimic such profile to effectively masquerade as the sender. As a consequence,
the success of such spoofing depends on how much information of the email
structure is available to the adversary and if the attacker has access to the
senders delivery infrastructure.

Therefore, we begin the evaluation of our approach by measuring in a
controlled experiment how an attacker may affect the detection performance
by spoofing an increasing number of features from a sender’s profile (i.e. all
features extracted from all emails received from a specific sender in a mailbox).
To this end, we first split each sender’s data in a mailbox into training and
testing sets and then train both kNN and SVM classifiers. For testing, we select
random emails from other mailboxes and relabel them as known senders of
the target mailbox to imitate spoofing attempts. This means that our testing
set is comprised of 50% of legitimate emails and 50% of spoofed emails with a
random percentage of correct traits of the target sender.

Note that to generate spoofed emails we do not rely on their textual content
for feature extraction. Moreover, we adapt the transport features added by the
recipient MTA to the recipient mailbox. As a result, the spoofed emails in our
testing set are not different from real spear-phishing emails sent by an attacker,
as no textual content is considered.

We measure the detection performance of our classifiers using the true-
positive rate (TPR) and false-positive rate (FPR). In our setup, a true positive
implies that a spoofed email has been correctly identified, while a false positive
corresponds to a legitimate email wrongly being tagged as spoofed. Furthermore,
we use a Receiver Operating Characteristic (ROC) curve to present both

26 Detection

evaluation metrics and calculate the area under the ROC curve (AUC) as a
numerical aggregate of the classification performance [see 47].

Although an adversary with increasing capacity will affect the ability of the
classifier to correctly identify deviations from a user profile, the information
available to an attacker is constrained by threat scenarios that can occur in
reality. In this work, we thus assume that the knowledge of an attacker can
range from knowing nothing about the spoofed sender to having real examples of
her emails. Accordingly, we model these attackers through a series of increasing
adversarial setups and proceed to evaluate the performance of our approach in
each scenario as depicted in Figure 2.6:

Alice Bob

Mallory

From: Alice
To: Bob

(a) Blind Spoofing

Alice

Mallory

BobCarol

Alice's domain

From: Carol
To: Mallory

From: Alice
To: Bob

(b) Known Domain

Alice

Mallory

Bob

From: Alice
To: Mallory

From: Alice
To: Bob

(c) Known Sender

Fig. 2.6 Threat scenarios for increasing attacker capabilities based on the
acquired knowledge about the spoofed sender: (a) the attacker has no informa-
tion about the sender, (b) the attacker has access to emails received from the
sender’s domain and, (c) the attacker has access to one or more emails from
the real sender.

(a) Blind Spoofing: In this scenario, the attacker (Mallory in Figure 2.6)
tries to spoof a particular sender from which she does not have any
information. The only available strategy for the attacker is to simply
replace the From and Return-Path headers of the targeted email and try
to guess the behavior, composition and transport features.

(b) Known Domain: In this scenario, the attacker has received or has access
to one or more emails sent by a sender that belongs to the same email
domain as the spoofed sender. The attacker can thus expect that some of
their transport features are present in the emails received by the victim
from the sender she wants to spoof.

(c) Known Sender: In this scenario the attacker has received or has access
to one or more emails sent by the spoofed sender. As a result, several
traits used for constructing the profile are available to the attacker and
can be incorporated in her spoofed emails.

2.3 Evaluation 27

In the following, we describe how we learn a profile of each sender within a
mailbox and assign the role of the victim to the owner of the mailbox. Then,
based on the attack strategies described in each scenario and using the emails
available in our dataset we build corresponding sets of spoofed emails for each
sender and combine them with legitimate emails to evaluate our method.

2.3.3 Spoofed Email Detection

We proceed then to evaluate the performance of our approach in the threat
scenarios defined in the previous section. In order to learn a profile for each
sender we begin again by splitting all available emails into training and testing
sets. For training, we consider all emails received up to a certain point in time.
In the case of the kNN classifier one email from a sender in the training set
suffices to make a decision about an incoming email from this origin address,
while for the SVM classifier we require a minimum of 5 emails from a sender to
include this class during training.

In order to tune the parameters of each classifier, we partition the training
data into 5 splits and use training/validation partitions, such that the temporal
order of emails is preserved—similar to a regular cross-validation. This enables
us to simulate training with past data and generating predictions for data yet
unseen. Note that although a mailbox or sender may not present enough emails
for training, we still use these samples to generate test spoofed emails.

For the testing phase, we combine the test set of legitimate emails with a set
of emails crafted according to the attacker strategies described in Section 2.3.2.
In the case of a blind spoofing attack, we select a random set of emails sent to
recipients at different domains than the victim and label them as the spoofed
sender. Likewise, we evaluate the known domain attack by selecting emails sent
from the domain of the spoofed sender by a different sender to other recipients.
Finally, we select emails sent by the spoofed sender to different recipients to
built the spoofed test set in the evaluation of the known sender attack.

During testing, we expect a legitimate email to be assigned to its true
class by the classifier. On the contrary, a spoofed email should be assigned to
any of the other classes, resulting in a mismatch between the sender address
from which the email is sent and the output of the classifier. There exists
thus a trade-off between the probability of detecting a spoofed email and the
probability of wrongly highlighting a legitimate email as spoofed. The ROC
curves depicted in Figure 2.7 show the trade-off between the false-positive rate
and the false-positive rate for both classifiers.

28 Detection

Table 2.3 Detection performance of our approach in different threat scenarios.

Blind Spoofing Known Domain Known Sender

kNN SVM kNN SVM kNN SVM

FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

0.01% 90.9% 0.01% 92.4% 0.01% 72.7% 0.01% 78.1% 0.01% 48.1% 0.01% 30.1%
0.1% 90.9% 0.1% 92.4% 0.1% 72.7% 0.1% 78.2% 0.1% 48.2% 0.1% 30.2%

1% 91.1% 1% 92.5% 1% 73.7% 1% 79.3% 1% 48.9% 1% 30.4%
10% 91.9% 10% 92.9% 10% 78.4% 10% 84.1% 10% 53.2% 10% 33.9%

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TP
R

Blind Spoofing
Known Domain
Known Sender

(a) kNN (k=10)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TP
R

Blind Spoofing
Known Domain
Known Sender

(b) SVM

Fig. 2.7 ROC curves for the classification of legitimate emails versus emails
spoofed by attackers with different levels of knowledge.

If the attacker lacks any knowledge about the spoofed sender, we observe
that the kNN and SVM classifiers can identify a spoofed email with a true-
positive rate of 90.9% and 92.4% respectively at a low false-positive rate of
0.01%. If the attacker has access to emails originating from the same domain,
the performance decreases to 72.7% and 78.1% but the classifier is still able
to effectively operate at the same low false-positive rate. In the worst-case
scenario, the attacker has enough information to craft an email that resembles
the learned profile of the spoofed sender, which causes the performance of
the classifier to deteriorate considerably. Table 2.3 specifies numerically the
detection achieved at 0.01%, 0.1%, 1% and 10% of false-positive rate for both
classifiers in all scenarios.

As mentioned above, we set a lower threshold for the minimum number of
emails required to train an SVM classifier. However, as shown in Figure 2.3
a larger number of emails above this threshold is available for many senders.

2.3 Evaluation 29

0 200 400 600 800 1000
Training sample size

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C
kNN classifier
SVM classifier

(a) Blind spoofing

0 200 400 600 800 1000
Training sample size

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

kNN classifier
SVM classifier

(b) Known domain

0 200 400 600 800 1000
Training sample size

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

kNN classifier
SVM classifier

(c) Known sender

Fig. 2.8 Area under the ROC curve as a function of the number of training
emails used to learn each sender’s individual profile.

Figure 2.8 shows in each scenario the relation between the number of emails
from a sender used to train the classifier and the AUC averaged over all
mailboxes and senders. As described in Section 2.3.1, sender profiles tend to
be more compact with an increasing number of emails. However, this can
affect the performance differently depending of the knowledge available to the
attacker. For instance, in threat scenarios a) and b), emails are classified with
an AUC over 0.85 with a small number of training samples. Spoofed emails
lay here far enough from the sender profile, leading to a stable or increased
performance when classes becomes more populated. In particular, the SVM
classifier offers a better performance at a low number of available emails, while
with an increasing training size, the kNN classifier surpasses the SVM.

On the contrary, in threat scenario c) the attacker is always able to craft an
email that resembles the profile of the spoofed sender, while a larger number of
training samples increases the variability of the sender profile. As each spoofed
email lay very close or within the target class, it becomes more difficult for the
classifier to correctly separate legimitate emails from spoofing attempts when
the sample size increases. A possible approach in such a high risk scenario, is
to operate the classifier at a higher FPR point and to retrain the model more
often on a smaller sample of the most recent emails received from each sender.

Furthermore, the use of a linear SVM for classification allows us to study
how the learning algorithm assigns different weights to each type of features
according to its importance for the classification and how the importance of
each group of features correlate with the importance of other groups. To this
end, we first determine the distribution of the normalized SVM weights and
group them by trait types.

30 Detection

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Behavior

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sp
or

t

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Composition

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sp
or

t

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Behavior

0.0

0.1

0.2

0.3

0.4

0.5

C
om

po
si

tio
n

Fig. 2.9 Correlation between the linear SVM scores of the different groups of
traits. Weights are assigned to each trait by the algorithm during training and
indicate the influence of the trait in the decision of the classifier.

We can observe in Figure 2.10 that, in comparison with behavior and com-
position features, transport related features manifest both a smaller dispersion
and a larger influence on the decision of the classifier. Moreover, the relations
depicted in Figure 2.9 indicate that while there exists an inverse correlation
between the influence of behavior and composition features as part of a sender’s
profile, transport features are mostly independent.

As a consequence, transport features have the most discriminative power and
this is not influenced by the variance in importance of behavior and composition
traits. At the same time, transport features are the most difficult traits to
forge as even a skilled adversary is not able to fully control transport features
without having access to the same delivery infrastructure of the sender.

composition behavior transport
Feature type

0.1

0.2

0.3

0.4

0.5

0.6

S
co

re

Fig. 2.10 Distribution of scores per group of traits as learnt by the linear SVM
classifier during training.

2.4 Limitations 31

2.3.4 Integration

Our proposed method represents not only an effective approach to detect
spoofed targeted emails, as we have demonstrated in this section, but is also
straightforward to integrate with any email client in a real deployment. To this
end, feature extraction is performed locally at the mailbox of the recipient and
the resulting feature vectors are fed to the learning algorithm. The classifier
can be trained locally as well as on a remote cluster infrastructure without any
loss of privacy as no information about the senders or their label mapping needs
to be shared. The learned model is then used at the incoming mail transport
agent or the client to make decisions about incoming emails.

Regarding the workflow of the recipient, Figure 2.11 illustrates how a
prototype implementing our method can be operated through the graphical
user interface of the email client. If an email does not match the profile of its
sender it is labeled as spoofed and highlighted ❶ in the interface. The same
occurs if the message is the first email received from an unknown address. In
both cases links and attachments are removed from the email ❷ and an alert
is shown to the recipient ❸. The user can then choose to load the removed
attachments and/or links for further inspection and to label the email as trusted
after proper verification ❹. If the email is labeled as trusted by the recipient,
both links and attachments are downloaded and the email is marked as safe.
As new emails arrive at the mailbox of the recipient it will be necessary to
retrain the model. For this purpose, all emails not labeled as spoofed and also
those manually labeled as trusted by the user will be included as training data
and considered legitimate during retraining.

A special case can occur if a sender makes use of several aliases to send
emails from a unique account. To avoid conflicts during testing, the recipient
can link these addresses ❹ and a unique identifier will be assigned to the
different addresses during training and testing.

2.4 Limitations

The evaluations in the previous section show that our method is capable of
reliably discriminating thousands of senders and identifying spoofed emails if
the attacker has limited knowledge of the email structure. Due to the problem
setting of detecting spoofing at the receiving side, however, our approach has
some inherent limitations which are discussed in the following.

32 Detection

 Carol Adleman Team-Meeting Now! 14:56 Work
 Alice Rivest FY17 Q2 Report 10:38 Work
 Paypal Your payment Yesterday Inbox

Alice Rivest

Bob Shamir

 Dave Shamir Dinner tomorrow? Yesterday Inbox

Alice Rivest

<The following message has been labeled as suspicious
and its attachments/links have been removed.>

Hi Bob,

please, find attached the last financial report of the company.
You can also download it from here

Best,
Alice

<link removed>

<attachment removed>

Label Email as Trusted
Load Links and Attachments

Link Address to Trusted Sender

Fig. 2.11 Example of email client interface presented to the user when an email
is detected as suspicious.

Advanced forgery Although spear-phishing and other targeted email
attacks today focus on the forgery of visible features like the sender address,
the subject and the content of an email to mimic trustworthy emails [11, 66],
we likely have to deal with more advanced attacks in the near future. If
current attacks are no longer successful because of increased user awareness
and detection approaches like ours, attackers will adapt their techniques.

For our method, the best strategy for evasion is to forge as many features
from the original sender as possible. An almost perfect forgery is thus a copy
of an original mail including also its true transport features as observed by
the recipient and enriched with some malicious content. However, the attacker
needs to take care of several traits that our method inspects, such as timestamps,
IP addresses in received headers and characteristics of the attachment. In the
worst case, the attacker is able to forge all of these details and hence the only

2.5 Related Work 33

indication of a spoofed email are minor inconsistencies between IP addresses
and hostnames.

Our method fails in this scenario, as only a few features differ from the
sender model. Nonetheless, the acquisition of emails from a sender and acquiring
access to the senders delivery infrastructure to control the transport features,
clearly raise the bar for conducting spear-phishing attacks. Therefore and with
the current lack of alternative protection approaches, our approach is a valuable
extension to current defenses.

Privacy and feature extraction We have implemented the feature ex-
traction in a privacy-friendly way in that all sensitive information of sender,
transport and recipients is only stored in an anonymized form by using a
hash with random salt. Only these anonymized features are kept and used
in the initial creation or retraining of the model. This makes it possible to
implement the system for example in a security appliance which receives all
feature vectors for analysis but does not store the mails. This also means,
however, that the model cannot be simply extended with new features and
retrained with old data, since the original mail as input for feature extraction
is no longer available. Feature extraction is therefore performed locally in every
case. Although this limits how anonymized data from different sources can be
combined for analysis, the recipient’s email information never leaves the local
machine, avoiding privacy issues and possible attack vectors.

Mislabeled data The possibility of the training data containing spoofed
emails should not be ignored. However and due to their very nature, the
prevalence of spear-phishing emails can only be very low within all emails sent
to a recipient. This problem, known as label noise [see 36], entails that training
samples can be considered subjected to an additive noise during training with a
probability of their labels being flipped. In our setup, however, such probability
will be very low and the effect during testing of such infrequent examples, while
existent, will be negligible.

2.5 Related Work

The detection of unwanted and malicious emails is a well-established problem
in security research. Several methods have been devised in the last years that
are related to our approach and which we briefly discuss in the following.

As non-targeted phishing mails are delivered in mass, they can be detected
by spam traps or generic heuristics. Once detected, a variety of features can

34 Detection

be extracted [e.g., 48, 95, 148] and used to update blacklists, filter rules or
reputation information of the web sites linked from the mail. By contrast, spear-
phishing emails are sent only to a small group of recipients and are customized
to look trustworthy, typically by spoofing a trusted sender. While malware
analysis and link reputation still work to a lesser degree in this scenario, features
depending on mass distribution are hidden from analysis. Recent strains of
research have thus attempted to detect spoofed emails by generating models of
trusted senders and comparing these learned models to the sender of an email.

For instance, several approaches exist that focus on the content of emails
and the style in which they are written [e.g., 141, 44, 64]. The assumption
behind these features is that the writing style of one sender differs significantly
from another and that it is too hard for the attacker to write a mail in the
same style as the sender she is trying to spoof. The implementation of such
content-based features can be as simple as using a 5-gram tokenizer [93] but
can also be more complex and include character distributions, atypical words
or more advanced stylometric features [141, 44, 64]. In many cases, these
stylometric features are used in combination with further behavioral features,
such as the time of writing.

While these approaches potentially provide a good detection of spoofed
emails, they present two problems. First, if text from the original sender is
available from any source stylometric traits can be easy to forge and second
such approaches require sufficient data to infer minor differences in stylometry
and can be computationally expensive. As a consequence, previous work often
operates with small datasets. For example, Lin et al. [93] conduct an evaluation
with only 6 senders due to a lack of available data. Similarly, Duman et al. [44]
discriminate only 215 senders in their experiments. Whether these techniques
can be scaled to cover thousands of senders is unclear and thus the application
of stylometric features for spear-phishing detection is still an open issue.

The problem of limited learning data is addressed by Stringhini et al. [141]
who propose a detection approach that, while also relying on email content,
is capable of analyzing larger datasets. However, their method requires a
minimum of 1,000 emails per sender to be effective. Moreover, they position
the defense at the sender’s server and require to include emails from different
mailboxes to build a reliable behavioral profile of a user. Such an approach is
thus orthogonal to our method which operates at the recipient’s side, who only
requires the information contained in her own mailbox to build an effective
defense. Furthermore, recipient related features are based on the idea that

2.5 Related Work 35

different recipients have different risk to get spear-phishing mails. Such features
are proposed by Amin [2] which determine the amount of information returned
by a search engine about a recipient and how often a person has received
malicious mails in the past. Unsurprisingly, the latter turns out to be a
dominant feature, i.e., those senders who got attacked a lot in the past will
probably also get attacked a lot in the future.

As in our work, infrastructure related features commonly include properties
of the transport like the senders IP address or her geographic location [93,
64]. But also features of the used mail client belong in this category since a
sender will usually use only a single or few email clients. Features related to
the infrastructure are often similar for all senders in the same domain which
can be used to increase model accuracy when only a few mails from a specific
sender are available. Compared to stylometric features, infrastructural features
do not model the actual author but only her environment. Therefore, it is
impossible to detect a hacked account with these features. On the other hand
infrastructural features need less training data to create a well-performing
model. Thus, it might be useful to combine the strength of both approaches.

Structural based features, instead of content based features are the dominant
ones in our evaluation. Such features were already used by Amin [2]. Contrary
to this work, our approach makes use of a larger set of features from the mail
client and from its transport and is based on distinguishing different senders
based on these features instead of globally distinguishing all spear-phishing
mails from all benign mails.

Finally, a method recently proposed by Ho et al. [70] focuses on the identifi-
cation of credential phishing and is designed to identify attacks from unseen
senders. Our approach is orthogonal to this work, as it addresses two of its
main shortcomings:

a) Ho et al. [70] considers the problem of address spoofing irrelevant due to
the availability of DKIM and DMARC. Our empirical analysis, however,
shows that both techniques are not widely available in practice and
thus alternative methods are needed to achieve a sufficient protection
from spear-phishing. Furthermore, DKIM and DMARC need to be
implemented at the sending side, which enables the attacker to choose a
known sender with lacking support for this security feature.

b) The proposed method requires the victim to interact with the phishing
email by clicking on a link. This poses a serious security risk and may

36 Detection

result in the victim’s host being compromised before the attack is actually
detected. Our approach does not require interaction and can block
phishing attacks before they reach their victim, for example, by removing
links and attachments from emails.

2.6 Summary

Spear-phishing attacks using spoofed emails are still one of the most effective
vectors for infiltrating companies and organizations and, the main strategy put
in place by actors with large resources to successfully initiate a targeted attack.

Although several anti-spoofing techniques, such as SPF, DKIM and DMARC,
exist, their low adoption in practice makes it easy for adversaries to construct
seemingly authentic emails. Moreover, users targeted by spear-phishing attacks
have little options for fending off these threats, as other protection mechanisms,
such as digital signatures or behavioral modelling [141], need to be deployed at
the sending side of the communication. As a consequence, there is an urgent
demand for detection methods that help to spot spear-phishing as a means of
thwarting most targeted attacks before any target can be compromised.

In this chapter, we show that a sender leaves several traits in the structure of
an email, resulting from her personal preferences, email client and infrastructure.
Based on these traits, we present a detection method that is capable of learning
profiles for senders and identifying impersonated emails without relying on
their content or server-side implementations. In an empirical evaluation with
over 17,000 senders, we demonstrate that this method can identify over 90% of
spoofed emails with less than 1 false alarm in 10,000 emails, if the attacker has
no knowledge of the sender’s profile. If the attacker has access to emails from
the same domain as the spoofed sender our method still attains a detection
rate of 78% and thus raises the bar for an adversary to effectively complete a
spoofing attack.

Although our approach cannot detect an attack by an adversary with vast
resources, it provides a strong protection from attackers that are not able to
obtain original emails from a specific sender. In practice, our approach thus
provides a valuable tool for fending off spear-phishing attacks that would go
unnoticed without a proper anti-spoofing detection.

With all that, however, effective detection represents only the first step
in a comprehensive strategy against targeted attacks. Once an attempt to
compromise a target has been blocked, the analyst will proceed to investigate

2.6 Summary 37

and characterize the threat in order to understand its implications and find
possible ways to mitigate future attacks. In the next chapter, we will explore
the role of malware as a source of threat intelligence and propose strategies
that will allow the analyst to link new samples found during the investigation
of an attack with existing known malicious code at a large scale.

03

Analysis

In the previous chapter, we have discussed how e-mail represents one of the
most common and effective vectors to compromise a victim in a targeted attack.
To effectively achieve this goal, attackers include links to malicious sites or
attach malicious code in such carefully crafted e-mails. Through a malware
infection the attacker is able to obtain persistence in the system first and
then move laterally to compromise the network. Therefore, in addition to
e-mail attachments, malware can reach the target system through background
downloads from a malicious website or directly through the execution in the
browser. From the perspective of the security analyst, the binary code of the
malware represents a major source of intelligence about the attacker and it can
help attributing the targeted attack to a known actor if the piece of malicious
code presents some similarity with previously studied samples.

As the vast majority of newly discovered malware samples are variations of
existing malware, detecting similarities to known malware has shown to be a
promising approach [see 161, 35, 58]. Identifying variations of code, however, is
an involved task as small changes at the source code may already have drastic
effects on compiled code: instructions may be reordered, branches may be
inverted or the allocation of registers may change [see 43]. To make matters
worse, such changes are often introduced deliberately by malware to evade
detection.

40 Analysis

Researchers dealing with the detection of malware have discovered that high-
level properties of code, in particular function call graphs, offer a suitably robust
representation to account for these variations [82, 71]. However, working with
graph representations for binary code, in general, and malware, in particular,
introduces a series of specific challenges. In the first place, it is not trivial
to obtain a graph representation for binary code that is able to effectively
capture the subtleties of code behavior. At the same time, taking advantage
of modern machine learning algorithms for detection and classification of
malicious code requires a proper representation that allows efficient learning
on graphs. Moreover, many learning algorithms learn on feature spaces that
sacrifice explainability for accuracy, resulting in output decisions being made
in a black-box fashion and thus, standing in the way of the security analyst to
understand why a piece of code has been labeled as malicious or classified as a
specific type of malware. Therefore, in the best case, a graph representation for
malware classification should be robust to low level code modifications while
being expressive, be efficient to compute and allow for a good classification
performance without scarifying explainability.

In this chapter we tackle several of these issues and propose a combination
of approaches that allows an analyst to effectively perform malware triage. In
summary, we make the following contributions:

• Generic labeling of binary functions. We present a generic labeling
scheme for binary code that enables us to construct labeled function call
graphs without information about function names.

• Explicit embedding of call graphs. We derive a feature map inspired
by graph kernels that allows for embedding function call graphs in a
vector space capturing structural relationships.

• Learning of implicit embedding of call graphs. We learn an al-
ternative low dimensional representation for call graphs through a deep
neural network architecture that allows us to embed latent variable models
into feature spaces using discriminative information.

• Structural triage of x86 malware. Both vectorial representations of
function call graphs enable us to classify x86 malware with high accuracy
using different machine learning algorithms. First, in a explicit and high
dimensional space and second, in a implicit and low dimensional space
with even better accuracy.

3.1 Structural Malware Triage 41

The rest of this chapter is structured as follows: we introduce the problem
of malware triage, its challenges and the opportunities offered by the struc-
tural analysis of binary code in Section 3.1. Next, we present our learning
approach based on explicit call graph embeddings in Section 3.3 and discuss in
Section 3.4 how deep neural networks can be trained to learn an alternative
graph embedding that, under certain constraints, can improve the performance
of classification algorithms in a lower dimensional space. In Section 3.5, we
empirically compare both approaches on a well known malware dataset discuss
their limitations in Section 3.6 and related work in Section 3.7 with Section 3.8
concluding the chapter.

3.1 Structural Malware Triage

Malicious code is often repurposed and, not in few cases, even generated through
automated modular software. As a result most of the newly discovered samples
are variations of existing malware, making malware triage an essential strategy
to analyze and gather further intelligence about an attack. Accordingly, security
researchers have long strived to develop approaches for the identification of
similarities between previously unseen malware samples discovered in the wild
and known malware families. The same holds true for malicious code used in
targeted attacks. Threats actors behind persistent campaigns typically invest
large resources in developing specialized modules [8], which might be used again
or simultaneously in several operations.

However, the problem of identifying similar behavior in binary malicious
code presents certain inherent challenges. In the first place, the analyst requires
a suitable representation for binary code that allows to measure similarity in
an adversarial setting. Such a representation should be able to expressively
represent code while being robust to modifications. Second and, considering
the sheer amount of new malware samples discovered everyday, similarity
approaches for malware triage should be able to deal with very large datasets
in an efficient manner.

We address these challenges through two complementary methods that
build on a static structural representation for binary code and the use of
machine learning techniques. In particular, our first approach builds on the
ideas originally introduced by Gascon et al. [56] to detect malicious applications
in the Android platform. In our generic setup for graph classification, we show
how the combination of a graph kernel and a convenient embedding in an

42 Analysis

equivalent explicit vector space can be successfully applied to the problem of
malware triage. As we will see, a hash-value is calculated over each node in a
function call graph and its direct neighboring nodes, allowing occurrences of
graph substructures to be effectively and explicitly enumerated. Then, samples
are embedded using an explicit map inspired by the neighborhood hash graph
kernel introduced by Hido et al. [69]. The map is designed such that evaluating
an inner product in the feature space is equivalent to computing the respective
graph kernel. Finally, using a linear machine learning classifier on such explicit
feature space allows us to, not only capture structural relationships in the
binary code, but also to explain what functions in the binary present the most
characteristic behavior of a family.

This representation is therefore designed with a focus on explainability,
however, it does present a trade-off where the high dimensionality of its feature
space imposes certain limitations in terms of scalability. As an alternative, we
build on our function call graph representation and propose a complementary
approach for graph embeddings that leverages a state-of-the-art neural network
architecture specially suited to learn efficiently on large structured data. As
we will see, by making a compromise on explainability, our method allows to
achieve an increased classification performance in a low-dimensional space.

In the following, we describe in detail our generic method for extraction and
labeling of malware call graphs. Then, we discuss our approach for designing an
explicit feature space for call graphs and subsequently, our approach for learning
a low-dimensional feature representation that improves the performance of
machine learning classifiers for malware triage.

3.2 Call Graph Extraction and Labeling

We begin implementing our methods by designing a structured representation
based on binary function call graphs and generated through static analysis.
Although it should be possible to generate call graphs dynamically, a static
approach enables the analyst to model functionality of the binary that may
not be executed at runtime and specially, avoid the high computational cost of
performing dynamic analysis at scale.

Therefore, the first step of our method requires each malware binary to be
disassembled and the identification of the calling dependencies between func-
tions. In addition, nodes of the function call graph are labeled to characterize
their content conveniently by short bit sequences.

3.2 Call Graph Extraction and Labeling 43

E = {e1, e2, e3}
<latexit sha1_base64="qzMNl4cNvHSkof/ZE6J4wLXH5F8=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWUpAq6EYoiuKxgL9CEMJmetEMnF2YmQgkFX8WNC0Xc+hzufBsnbRbaemCGj/8/hznz+wlnUlnWt1FaWl5ZXSuvVzY2t7Z3zN29toxTQaFFYx6Lrk8kcBZBSzHFoZsIIKHPoeOPbnK/8whCsjh6UOME3JAMIhYwSpSWPPPgFl9hJwPPPsXg1fPrzJl4ZtWqWdPCi2AXUEVFNT3zy+nHNA0hUpQTKXu2lSg3I0IxymFScVIJCaEjMoCexoiEIN1suv4EH2ulj4NY6BMpPFV/T2QklHIc+rozJGoo571c/M/rpSq4dDMWJamCiM4eClKOVYzzLHCfCaCKjzUQKpjeFdMhEYQqnVhFh2DPf3kR2vWarfn+vNq4LuIoo0N0hE6QjS5QA92hJmohijL0jF7Rm/FkvBjvxsestWQUM/voTxmfP75kk2k=</latexit><latexit sha1_base64="qzMNl4cNvHSkof/ZE6J4wLXH5F8=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWUpAq6EYoiuKxgL9CEMJmetEMnF2YmQgkFX8WNC0Xc+hzufBsnbRbaemCGj/8/hznz+wlnUlnWt1FaWl5ZXSuvVzY2t7Z3zN29toxTQaFFYx6Lrk8kcBZBSzHFoZsIIKHPoeOPbnK/8whCsjh6UOME3JAMIhYwSpSWPPPgFl9hJwPPPsXg1fPrzJl4ZtWqWdPCi2AXUEVFNT3zy+nHNA0hUpQTKXu2lSg3I0IxymFScVIJCaEjMoCexoiEIN1suv4EH2ulj4NY6BMpPFV/T2QklHIc+rozJGoo571c/M/rpSq4dDMWJamCiM4eClKOVYzzLHCfCaCKjzUQKpjeFdMhEYQqnVhFh2DPf3kR2vWarfn+vNq4LuIoo0N0hE6QjS5QA92hJmohijL0jF7Rm/FkvBjvxsestWQUM/voTxmfP75kk2k=</latexit><latexit sha1_base64="qzMNl4cNvHSkof/ZE6J4wLXH5F8=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWUpAq6EYoiuKxgL9CEMJmetEMnF2YmQgkFX8WNC0Xc+hzufBsnbRbaemCGj/8/hznz+wlnUlnWt1FaWl5ZXSuvVzY2t7Z3zN29toxTQaFFYx6Lrk8kcBZBSzHFoZsIIKHPoeOPbnK/8whCsjh6UOME3JAMIhYwSpSWPPPgFl9hJwPPPsXg1fPrzJl4ZtWqWdPCi2AXUEVFNT3zy+nHNA0hUpQTKXu2lSg3I0IxymFScVIJCaEjMoCexoiEIN1suv4EH2ulj4NY6BMpPFV/T2QklHIc+rozJGoo571c/M/rpSq4dDMWJamCiM4eClKOVYzzLHCfCaCKjzUQKpjeFdMhEYQqnVhFh2DPf3kR2vWarfn+vNq4LuIoo0N0hE6QjS5QA92hJmohijL0jF7Rm/FkvBjvxsestWQUM/voTxmfP75kk2k=</latexit><latexit sha1_base64="qzMNl4cNvHSkof/ZE6J4wLXH5F8=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3AwWwYWUpAq6EYoiuKxgL9CEMJmetEMnF2YmQgkFX8WNC0Xc+hzufBsnbRbaemCGj/8/hznz+wlnUlnWt1FaWl5ZXSuvVzY2t7Z3zN29toxTQaFFYx6Lrk8kcBZBSzHFoZsIIKHPoeOPbnK/8whCsjh6UOME3JAMIhYwSpSWPPPgFl9hJwPPPsXg1fPrzJl4ZtWqWdPCi2AXUEVFNT3zy+nHNA0hUpQTKXu2lSg3I0IxymFScVIJCaEjMoCexoiEIN1suv4EH2ulj4NY6BMpPFV/T2QklHIc+rozJGoo571c/M/rpSq4dDMWJamCiM4eClKOVYzzLHCfCaCKjzUQKpjeFdMhEYQqnVhFh2DPf3kR2vWarfn+vNq4LuIoo0N0hE6QjS5QA92hJmohijL0jF7Rm/FkvBjvxsestWQUM/voTxmfP75kk2k=</latexit>

L = {l1, l2, l3, l4}
<latexit sha1_base64="LK0eDvzffFcudot5N3B39/FAaYE=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCCylJLehGKLpx4aKCfUATwmQ6bYdOHsxMhBIKbvwVNy4UcetPuPNvnLRZaOuBuRzOuZc79/gxZ1JZ1rdRWFpeWV0rrpc2Nre2d8zdvZaMEkFok0Q8Eh0fS8pZSJuKKU47saA48Dlt+6PrzG8/UCFZFN6rcUzdAA9C1mcEKy155sEtukROyj37FHGvmpWzrNSciWeWrYo1BVokdk7KkKPhmV9OLyJJQENFOJaya1uxclMsFCOcTkpOImmMyQgPaFfTEAdUuun0hgk61koP9SOhX6jQVP09keJAynHg684Aq6Gc9zLxP6+bqP6Fm7IwThQNyWxRP+FIRSgLBPWYoETxsSaYCKb/isgQC0yUjq2kQ7DnT14krWrF1vyuVq5f5XEU4RCO4ARsOIc63EADmkDgEZ7hFd6MJ+PFeDc+Zq0FI5/Zhz8wPn8AuKmVAg==</latexit><latexit sha1_base64="LK0eDvzffFcudot5N3B39/FAaYE=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCCylJLehGKLpx4aKCfUATwmQ6bYdOHsxMhBIKbvwVNy4UcetPuPNvnLRZaOuBuRzOuZc79/gxZ1JZ1rdRWFpeWV0rrpc2Nre2d8zdvZaMEkFok0Q8Eh0fS8pZSJuKKU47saA48Dlt+6PrzG8/UCFZFN6rcUzdAA9C1mcEKy155sEtukROyj37FHGvmpWzrNSciWeWrYo1BVokdk7KkKPhmV9OLyJJQENFOJaya1uxclMsFCOcTkpOImmMyQgPaFfTEAdUuun0hgk61koP9SOhX6jQVP09keJAynHg684Aq6Gc9zLxP6+bqP6Fm7IwThQNyWxRP+FIRSgLBPWYoETxsSaYCKb/isgQC0yUjq2kQ7DnT14krWrF1vyuVq5f5XEU4RCO4ARsOIc63EADmkDgEZ7hFd6MJ+PFeDc+Zq0FI5/Zhz8wPn8AuKmVAg==</latexit><latexit sha1_base64="LK0eDvzffFcudot5N3B39/FAaYE=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCCylJLehGKLpx4aKCfUATwmQ6bYdOHsxMhBIKbvwVNy4UcetPuPNvnLRZaOuBuRzOuZc79/gxZ1JZ1rdRWFpeWV0rrpc2Nre2d8zdvZaMEkFok0Q8Eh0fS8pZSJuKKU47saA48Dlt+6PrzG8/UCFZFN6rcUzdAA9C1mcEKy155sEtukROyj37FHGvmpWzrNSciWeWrYo1BVokdk7KkKPhmV9OLyJJQENFOJaya1uxclMsFCOcTkpOImmMyQgPaFfTEAdUuun0hgk61koP9SOhX6jQVP09keJAynHg684Aq6Gc9zLxP6+bqP6Fm7IwThQNyWxRP+FIRSgLBPWYoETxsSaYCKb/isgQC0yUjq2kQ7DnT14krWrF1vyuVq5f5XEU4RCO4ARsOIc63EADmkDgEZ7hFd6MJ+PFeDc+Zq0FI5/Zhz8wPn8AuKmVAg==</latexit><latexit sha1_base64="LK0eDvzffFcudot5N3B39/FAaYE=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCCylJLehGKLpx4aKCfUATwmQ6bYdOHsxMhBIKbvwVNy4UcetPuPNvnLRZaOuBuRzOuZc79/gxZ1JZ1rdRWFpeWV0rrpc2Nre2d8zdvZaMEkFok0Q8Eh0fS8pZSJuKKU47saA48Dlt+6PrzG8/UCFZFN6rcUzdAA9C1mcEKy155sEtukROyj37FHGvmpWzrNSciWeWrYo1BVokdk7KkKPhmV9OLyJJQENFOJaya1uxclMsFCOcTkpOImmMyQgPaFfTEAdUuun0hgk61koP9SOhX6jQVP09keJAynHg684Aq6Gc9zLxP6+bqP6Fm7IwThQNyWxRP+FIRSgLBPWYoETxsSaYCKb/isgQC0yUjq2kQ7DnT14krWrF1vyuVq5f5XEU4RCO4ARsOIc63EADmkDgEZ7hFd6MJ+PFeDc+Zq0FI5/Zhz8wPn8AuKmVAg==</latexit>

readData()

e1
<latexit sha1_base64="A4LKFctWm7go1Kde0enhNIhrIqU=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9YB9v+9WvZo3F1kFv4AqFGr03a/eIGFZjNIwQbXu+l5qgpwqw5nAaaWXaUwpG9Mhdi1KGqMO8vmqU3JmnQGJEmWfNGTu/p7Iaaz1JA5tZ0zNSC/XZuZ/tW5mousg5zLNDEq2+CjKBDEJmd1NBlwhM2JigTLF7a6EjaiizNh0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5gjnxXl3PhatJaeYOYY/cj5/AO6xjY0=</latexit><latexit sha1_base64="A4LKFctWm7go1Kde0enhNIhrIqU=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9YB9v+9WvZo3F1kFv4AqFGr03a/eIGFZjNIwQbXu+l5qgpwqw5nAaaWXaUwpG9Mhdi1KGqMO8vmqU3JmnQGJEmWfNGTu/p7Iaaz1JA5tZ0zNSC/XZuZ/tW5mousg5zLNDEq2+CjKBDEJmd1NBlwhM2JigTLF7a6EjaiizNh0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5gjnxXl3PhatJaeYOYY/cj5/AO6xjY0=</latexit><latexit sha1_base64="A4LKFctWm7go1Kde0enhNIhrIqU=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9YB9v+9WvZo3F1kFv4AqFGr03a/eIGFZjNIwQbXu+l5qgpwqw5nAaaWXaUwpG9Mhdi1KGqMO8vmqU3JmnQGJEmWfNGTu/p7Iaaz1JA5tZ0zNSC/XZuZ/tW5mousg5zLNDEq2+CjKBDEJmd1NBlwhM2JigTLF7a6EjaiizNh0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5gjnxXl3PhatJaeYOYY/cj5/AO6xjY0=</latexit><latexit sha1_base64="A4LKFctWm7go1Kde0enhNIhrIqU=">AAAB6nicbZBNS8NAEIYn9avWr6hHL4tF8FQSEfRY9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOsLCw/vzLAzb5gKro3nfTultfWNza3ydmVnd2//wD08aukkUwybLBGJ6oRUo+ASm4YbgZ1UIY1Dge1wfDurt59QaZ7IRzNJMYjpUPKIM2qs9YB9v+9WvZo3F1kFv4AqFGr03a/eIGFZjNIwQbXu+l5qgpwqw5nAaaWXaUwpG9Mhdi1KGqMO8vmqU3JmnQGJEmWfNGTu/p7Iaaz1JA5tZ0zNSC/XZuZ/tW5mousg5zLNDEq2+CjKBDEJmd1NBlwhM2JigTLF7a6EjaiizNh0KjYEf/nkVWhd1HzL95fV+k0RRxlO4BTOwYcrqMMdNKAJDIbwDK/w5gjnxXl3PhatJaeYOYY/cj5/AO6xjY0=</latexit>

e2
<latexit sha1_base64="WXltZkHiux5rl9my0N7VufNkQ18=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrQcc1Ablilt1FyLr4OVQgVzNQfmrP4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD2Lkkao/Wyx6oxcWGdIwljZJw1ZuL8nMhppPY0C2xlRM9artbn5X62XmvDaz7hMUoOSLT8KU0FMTOZ3kyFXyIyYWqBMcbsrYWOqKDM2nZINwVs9eR3atapn+f6q0rjJ4yjCGZzDJXhQhwbcQRNawGAEz/AKb45wXpx352PZWnDymVP4I+fzB/A1jY4=</latexit><latexit sha1_base64="WXltZkHiux5rl9my0N7VufNkQ18=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrQcc1Ablilt1FyLr4OVQgVzNQfmrP4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD2Lkkao/Wyx6oxcWGdIwljZJw1ZuL8nMhppPY0C2xlRM9artbn5X62XmvDaz7hMUoOSLT8KU0FMTOZ3kyFXyIyYWqBMcbsrYWOqKDM2nZINwVs9eR3atapn+f6q0rjJ4yjCGZzDJXhQhwbcQRNawGAEz/AKb45wXpx352PZWnDymVP4I+fzB/A1jY4=</latexit><latexit sha1_base64="WXltZkHiux5rl9my0N7VufNkQ18=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrQcc1Ablilt1FyLr4OVQgVzNQfmrP4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD2Lkkao/Wyx6oxcWGdIwljZJw1ZuL8nMhppPY0C2xlRM9artbn5X62XmvDaz7hMUoOSLT8KU0FMTOZ3kyFXyIyYWqBMcbsrYWOqKDM2nZINwVs9eR3atapn+f6q0rjJ4yjCGZzDJXhQhwbcQRNawGAEz/AKb45wXpx352PZWnDymVP4I+fzB/A1jY4=</latexit><latexit sha1_base64="WXltZkHiux5rl9my0N7VufNkQ18=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FSSItRj0YvHivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk9t5vfOESvNYPpppgn5ER5KHnFFjrQcc1Ablilt1FyLr4OVQgVzNQfmrP4xZGqE0TFCte56bGD+jynAmcFbqpxoTyiZ0hD2Lkkao/Wyx6oxcWGdIwljZJw1ZuL8nMhppPY0C2xlRM9artbn5X62XmvDaz7hMUoOSLT8KU0FMTOZ3kyFXyIyYWqBMcbsrYWOqKDM2nZINwVs9eR3atapn+f6q0rjJ4yjCGZzDJXhQhwbcQRNawGAEz/AKb45wXpx352PZWnDymVP4I+fzB/A1jY4=</latexit>

e3
<latexit sha1_base64="VRR71nqaXuvQpMkdXrt+Vfhh+/I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1gP2L/vlilt15yKr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF2Lkkao/Wy+6pScWWdAwljZJw2Zu78nMhppPYkC2xlRM9LLtZn5X62bmvDaz7hMUoOSLT4KU0FMTGZ3kwFXyIyYWKBMcbsrYSOqKDM2nZINwVs+eRVaF1XP8n2tUr/J4yjCCZzCOXhwBXW4gwY0gcEQnuEV3hzhvDjvzseiteDkM8fwR87nD/G5jY8=</latexit><latexit sha1_base64="VRR71nqaXuvQpMkdXrt+Vfhh+/I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1gP2L/vlilt15yKr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF2Lkkao/Wy+6pScWWdAwljZJw2Zu78nMhppPYkC2xlRM9LLtZn5X62bmvDaz7hMUoOSLT4KU0FMTGZ3kwFXyIyYWKBMcbsrYSOqKDM2nZINwVs+eRVaF1XP8n2tUr/J4yjCCZzCOXhwBXW4gwY0gcEQnuEV3hzhvDjvzseiteDkM8fwR87nD/G5jY8=</latexit><latexit sha1_base64="VRR71nqaXuvQpMkdXrt+Vfhh+/I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1gP2L/vlilt15yKr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF2Lkkao/Wy+6pScWWdAwljZJw2Zu78nMhppPYkC2xlRM9LLtZn5X62bmvDaz7hMUoOSLT4KU0FMTGZ3kwFXyIyYWKBMcbsrYSOqKDM2nZINwVs+eRVaF1XP8n2tUr/J4yjCCZzCOXhwBXW4gwY0gcEQnuEV3hzhvDjvzseiteDkM8fwR87nD/G5jY8=</latexit><latexit sha1_base64="VRR71nqaXuvQpMkdXrt+Vfhh+/I=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix6MVjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5CpXksH80kQT+iQ8lDzqix1gP2L/vlilt15yKr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF2Lkkao/Wy+6pScWWdAwljZJw2Zu78nMhppPYkC2xlRM9LLtZn5X62bmvDaz7hMUoOSLT4KU0FMTGZ3kwFXyIyYWKBMcbsrYSOqKDM2nZINwVs+eRVaF1XP8n2tUr/J4yjCCZzCOXhwBXW4gwY0gcEQnuEV3hzhvDjvzseiteDkM8fwR87nD/G5jY8=</latexit>

main()

exploit()

sendData()

v1, l1
<latexit sha1_base64="150v4dd5/1vCIwBeOxehIOHYw+U=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8CAlEUGPRS8eK9gPaEPYbDft0s0m7k4KpfRPePGgiFf/jjf/jds2B219YeHhnRl25g1TKQy67rdTWFvf2Nwqbpd2dvf2D8qHR02TZJrxBktkotshNVwKxRsoUPJ2qjmNQ8lb4fBuVm+NuDYiUY84Trkf074SkWAUrdUeBd4FkYEXlCtu1Z2LrIKXQwVy1YPyV7eXsCzmCpmkxnQ8N0V/QjUKJvm01M0MTykb0j7vWFQ05safzPedkjPr9EiUaPsUkrn7e2JCY2PGcWg7Y4oDs1ybmf/VOhlGN/5EqDRDrtjioyiTBBMyO570hOYM5dgCZVrYXQkbUE0Z2ohKNgRv+eRVaF5WPcsPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5T86L8+58LFoLTj5zDH/kfP4AueWPGA==</latexit><latexit sha1_base64="150v4dd5/1vCIwBeOxehIOHYw+U=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8CAlEUGPRS8eK9gPaEPYbDft0s0m7k4KpfRPePGgiFf/jjf/jds2B219YeHhnRl25g1TKQy67rdTWFvf2Nwqbpd2dvf2D8qHR02TZJrxBktkotshNVwKxRsoUPJ2qjmNQ8lb4fBuVm+NuDYiUY84Trkf074SkWAUrdUeBd4FkYEXlCtu1Z2LrIKXQwVy1YPyV7eXsCzmCpmkxnQ8N0V/QjUKJvm01M0MTykb0j7vWFQ05safzPedkjPr9EiUaPsUkrn7e2JCY2PGcWg7Y4oDs1ybmf/VOhlGN/5EqDRDrtjioyiTBBMyO570hOYM5dgCZVrYXQkbUE0Z2ohKNgRv+eRVaF5WPcsPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5T86L8+58LFoLTj5zDH/kfP4AueWPGA==</latexit><latexit sha1_base64="150v4dd5/1vCIwBeOxehIOHYw+U=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8CAlEUGPRS8eK9gPaEPYbDft0s0m7k4KpfRPePGgiFf/jjf/jds2B219YeHhnRl25g1TKQy67rdTWFvf2Nwqbpd2dvf2D8qHR02TZJrxBktkotshNVwKxRsoUPJ2qjmNQ8lb4fBuVm+NuDYiUY84Trkf074SkWAUrdUeBd4FkYEXlCtu1Z2LrIKXQwVy1YPyV7eXsCzmCpmkxnQ8N0V/QjUKJvm01M0MTykb0j7vWFQ05safzPedkjPr9EiUaPsUkrn7e2JCY2PGcWg7Y4oDs1ybmf/VOhlGN/5EqDRDrtjioyiTBBMyO570hOYM5dgCZVrYXQkbUE0Z2ohKNgRv+eRVaF5WPcsPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5T86L8+58LFoLTj5zDH/kfP4AueWPGA==</latexit><latexit sha1_base64="150v4dd5/1vCIwBeOxehIOHYw+U=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8CAlEUGPRS8eK9gPaEPYbDft0s0m7k4KpfRPePGgiFf/jjf/jds2B219YeHhnRl25g1TKQy67rdTWFvf2Nwqbpd2dvf2D8qHR02TZJrxBktkotshNVwKxRsoUPJ2qjmNQ8lb4fBuVm+NuDYiUY84Trkf074SkWAUrdUeBd4FkYEXlCtu1Z2LrIKXQwVy1YPyV7eXsCzmCpmkxnQ8N0V/QjUKJvm01M0MTykb0j7vWFQ05safzPedkjPr9EiUaPsUkrn7e2JCY2PGcWg7Y4oDs1ybmf/VOhlGN/5EqDRDrtjioyiTBBMyO570hOYM5dgCZVrYXQkbUE0Z2ohKNgRv+eRVaF5WPcsPV5XabR5HEU7gFM7Bg2uowT3UoQEMJDzDK7w5T86L8+58LFoLTj5zDH/kfP4AueWPGA==</latexit>

v2, l2
<latexit sha1_base64="H+gHPbAbX0zmt8mbZ9qfKFlDVOk=">AAAB73icbZBNS8NAEIYnftb6VfXoZbEIHqQkRdBj0YvHCvYD2hA222m7dLOJu5tCCf0TXjwo4tW/481/47bNQVtfWHh4Z4adecNEcG1c99tZW9/Y3Nou7BR39/YPDktHx00dp4phg8UiVu2QahRcYsNwI7CdKKRRKLAVju5m9dYYleaxfDSTBP2IDiTvc0aNtdrjoHpJRFANSmW34s5FVsHLoQy56kHpq9uLWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdi5JGqP1svu+UnFunR/qxsk8aMnd/T2Q00noShbYzomaol2sz879aJzX9Gz/jMkkNSrb4qJ8KYmIyO570uEJmxMQCZYrbXQkbUkWZsREVbQje8smr0KxWPMsPV+XabR5HAU7hDC7Ag2uowT3UoQEMBDzDK7w5T86L8+58LFrXnHzmBP7I+fwBvPKPGg==</latexit><latexit sha1_base64="H+gHPbAbX0zmt8mbZ9qfKFlDVOk=">AAAB73icbZBNS8NAEIYnftb6VfXoZbEIHqQkRdBj0YvHCvYD2hA222m7dLOJu5tCCf0TXjwo4tW/481/47bNQVtfWHh4Z4adecNEcG1c99tZW9/Y3Nou7BR39/YPDktHx00dp4phg8UiVu2QahRcYsNwI7CdKKRRKLAVju5m9dYYleaxfDSTBP2IDiTvc0aNtdrjoHpJRFANSmW34s5FVsHLoQy56kHpq9uLWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdi5JGqP1svu+UnFunR/qxsk8aMnd/T2Q00noShbYzomaol2sz879aJzX9Gz/jMkkNSrb4qJ8KYmIyO570uEJmxMQCZYrbXQkbUkWZsREVbQje8smr0KxWPMsPV+XabR5HAU7hDC7Ag2uowT3UoQEMBDzDK7w5T86L8+58LFrXnHzmBP7I+fwBvPKPGg==</latexit><latexit sha1_base64="H+gHPbAbX0zmt8mbZ9qfKFlDVOk=">AAAB73icbZBNS8NAEIYnftb6VfXoZbEIHqQkRdBj0YvHCvYD2hA222m7dLOJu5tCCf0TXjwo4tW/481/47bNQVtfWHh4Z4adecNEcG1c99tZW9/Y3Nou7BR39/YPDktHx00dp4phg8UiVu2QahRcYsNwI7CdKKRRKLAVju5m9dYYleaxfDSTBP2IDiTvc0aNtdrjoHpJRFANSmW34s5FVsHLoQy56kHpq9uLWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdi5JGqP1svu+UnFunR/qxsk8aMnd/T2Q00noShbYzomaol2sz879aJzX9Gz/jMkkNSrb4qJ8KYmIyO570uEJmxMQCZYrbXQkbUkWZsREVbQje8smr0KxWPMsPV+XabR5HAU7hDC7Ag2uowT3UoQEMBDzDK7w5T86L8+58LFrXnHzmBP7I+fwBvPKPGg==</latexit><latexit sha1_base64="H+gHPbAbX0zmt8mbZ9qfKFlDVOk=">AAAB73icbZBNS8NAEIYnftb6VfXoZbEIHqQkRdBj0YvHCvYD2hA222m7dLOJu5tCCf0TXjwo4tW/481/47bNQVtfWHh4Z4adecNEcG1c99tZW9/Y3Nou7BR39/YPDktHx00dp4phg8UiVu2QahRcYsNwI7CdKKRRKLAVju5m9dYYleaxfDSTBP2IDiTvc0aNtdrjoHpJRFANSmW34s5FVsHLoQy56kHpq9uLWRqhNExQrTuemxg/o8pwJnBa7KYaE8pGdIAdi5JGqP1svu+UnFunR/qxsk8aMnd/T2Q00noShbYzomaol2sz879aJzX9Gz/jMkkNSrb4qJ8KYmIyO570uEJmxMQCZYrbXQkbUkWZsREVbQje8smr0KxWPMsPV+XabR5HAU7hDC7Ag2uowT3UoQEMBDzDK7w5T86L8+58LFrXnHzmBP7I+fwBvPKPGg==</latexit>

v3, l3
<latexit sha1_base64="U+TPNVyIhX6tuj4Lu3ku//gp1O8=">AAAB73icbZDLSgMxFIbP1Futt6pLN8EiuJAyYwVdFt24rGAv0A5DJs20oZlkTDKFMvQl3LhQxK2v4863MW1noa0/BD7+cw455w8TzrRx3W+nsLa+sblV3C7t7O7tH5QPj1paporQJpFcqk6INeVM0KZhhtNOoiiOQ07b4ehuVm+PqdJMikczSagf44FgESPYWKszDmoXiAe1oFxxq+5caBW8HCqQqxGUv3p9SdKYCkM41rrruYnxM6wMI5xOS71U0wSTER7QrkWBY6r9bL7vFJ1Zp48iqewTBs3d3xMZjrWexKHtjLEZ6uXazPyv1k1NdONnTCSpoYIsPopSjoxEs+NRnylKDJ9YwEQxuysiQ6wwMTaikg3BWz55FVqXVc/yw1WlfpvHUYQTOIVz8OAa6nAPDWgCAQ7P8ApvzpPz4rw7H4vWgpPPHMMfOZ8/v/+PHA==</latexit><latexit sha1_base64="U+TPNVyIhX6tuj4Lu3ku//gp1O8=">AAAB73icbZDLSgMxFIbP1Futt6pLN8EiuJAyYwVdFt24rGAv0A5DJs20oZlkTDKFMvQl3LhQxK2v4863MW1noa0/BD7+cw455w8TzrRx3W+nsLa+sblV3C7t7O7tH5QPj1paporQJpFcqk6INeVM0KZhhtNOoiiOQ07b4ehuVm+PqdJMikczSagf44FgESPYWKszDmoXiAe1oFxxq+5caBW8HCqQqxGUv3p9SdKYCkM41rrruYnxM6wMI5xOS71U0wSTER7QrkWBY6r9bL7vFJ1Zp48iqewTBs3d3xMZjrWexKHtjLEZ6uXazPyv1k1NdONnTCSpoYIsPopSjoxEs+NRnylKDJ9YwEQxuysiQ6wwMTaikg3BWz55FVqXVc/yw1WlfpvHUYQTOIVz8OAa6nAPDWgCAQ7P8ApvzpPz4rw7H4vWgpPPHMMfOZ8/v/+PHA==</latexit><latexit sha1_base64="U+TPNVyIhX6tuj4Lu3ku//gp1O8=">AAAB73icbZDLSgMxFIbP1Futt6pLN8EiuJAyYwVdFt24rGAv0A5DJs20oZlkTDKFMvQl3LhQxK2v4863MW1noa0/BD7+cw455w8TzrRx3W+nsLa+sblV3C7t7O7tH5QPj1paporQJpFcqk6INeVM0KZhhtNOoiiOQ07b4ehuVm+PqdJMikczSagf44FgESPYWKszDmoXiAe1oFxxq+5caBW8HCqQqxGUv3p9SdKYCkM41rrruYnxM6wMI5xOS71U0wSTER7QrkWBY6r9bL7vFJ1Zp48iqewTBs3d3xMZjrWexKHtjLEZ6uXazPyv1k1NdONnTCSpoYIsPopSjoxEs+NRnylKDJ9YwEQxuysiQ6wwMTaikg3BWz55FVqXVc/yw1WlfpvHUYQTOIVz8OAa6nAPDWgCAQ7P8ApvzpPz4rw7H4vWgpPPHMMfOZ8/v/+PHA==</latexit><latexit sha1_base64="U+TPNVyIhX6tuj4Lu3ku//gp1O8=">AAAB73icbZDLSgMxFIbP1Futt6pLN8EiuJAyYwVdFt24rGAv0A5DJs20oZlkTDKFMvQl3LhQxK2v4863MW1noa0/BD7+cw455w8TzrRx3W+nsLa+sblV3C7t7O7tH5QPj1paporQJpFcqk6INeVM0KZhhtNOoiiOQ07b4ehuVm+PqdJMikczSagf44FgESPYWKszDmoXiAe1oFxxq+5caBW8HCqQqxGUv3p9SdKYCkM41rrruYnxM6wMI5xOS71U0wSTER7QrkWBY6r9bL7vFJ1Zp48iqewTBs3d3xMZjrWexKHtjLEZ6uXazPyv1k1NdONnTCSpoYIsPopSjoxEs+NRnylKDJ9YwEQxuysiQ6wwMTaikg3BWz55FVqXVc/yw1WlfpvHUYQTOIVz8OAa6nAPDWgCAQ7P8ApvzpPz4rw7H4vWgpPPHMMfOZ8/v/+PHA==</latexit>

v4, l4
<latexit sha1_base64="yJPHyKyT6y/OLrLGC4HCJILhyC4=">AAAB73icbZBNSwMxEIZn61etX1WPXoJF8CBlVwp6LHrxWMHWQrss2XS2Dc1m1yRbKKV/wosHRbz6d7z5b0zbPWjrC4GHd2bIzBumgmvjut9OYW19Y3OruF3a2d3bPygfHrV0kimGTZaIRLVDqlFwiU3DjcB2qpDGocDHcHg7qz+OUGmeyAczTtGPaV/yiDNqrNUeBbULIoJaUK64VXcusgpeDhXI1QjKX91ewrIYpWGCat3x3NT4E6oMZwKnpW6mMaVsSPvYsShpjNqfzPedkjPr9EiUKPukIXP398SExlqP49B2xtQM9HJtZv5X62QmuvYnXKaZQckWH0WZICYhs+NJjytkRowtUKa43ZWwAVWUGRtRyYbgLZ+8Cq3Lqmf5vlap3+RxFOEETuEcPLiCOtxBA5rAQMAzvMKb8+S8OO/Ox6K14OQzx/BHzucPwwyPHg==</latexit><latexit sha1_base64="yJPHyKyT6y/OLrLGC4HCJILhyC4=">AAAB73icbZBNSwMxEIZn61etX1WPXoJF8CBlVwp6LHrxWMHWQrss2XS2Dc1m1yRbKKV/wosHRbz6d7z5b0zbPWjrC4GHd2bIzBumgmvjut9OYW19Y3OruF3a2d3bPygfHrV0kimGTZaIRLVDqlFwiU3DjcB2qpDGocDHcHg7qz+OUGmeyAczTtGPaV/yiDNqrNUeBbULIoJaUK64VXcusgpeDhXI1QjKX91ewrIYpWGCat3x3NT4E6oMZwKnpW6mMaVsSPvYsShpjNqfzPedkjPr9EiUKPukIXP398SExlqP49B2xtQM9HJtZv5X62QmuvYnXKaZQckWH0WZICYhs+NJjytkRowtUKa43ZWwAVWUGRtRyYbgLZ+8Cq3Lqmf5vlap3+RxFOEETuEcPLiCOtxBA5rAQMAzvMKb8+S8OO/Ox6K14OQzx/BHzucPwwyPHg==</latexit><latexit sha1_base64="yJPHyKyT6y/OLrLGC4HCJILhyC4=">AAAB73icbZBNSwMxEIZn61etX1WPXoJF8CBlVwp6LHrxWMHWQrss2XS2Dc1m1yRbKKV/wosHRbz6d7z5b0zbPWjrC4GHd2bIzBumgmvjut9OYW19Y3OruF3a2d3bPygfHrV0kimGTZaIRLVDqlFwiU3DjcB2qpDGocDHcHg7qz+OUGmeyAczTtGPaV/yiDNqrNUeBbULIoJaUK64VXcusgpeDhXI1QjKX91ewrIYpWGCat3x3NT4E6oMZwKnpW6mMaVsSPvYsShpjNqfzPedkjPr9EiUKPukIXP398SExlqP49B2xtQM9HJtZv5X62QmuvYnXKaZQckWH0WZICYhs+NJjytkRowtUKa43ZWwAVWUGRtRyYbgLZ+8Cq3Lqmf5vlap3+RxFOEETuEcPLiCOtxBA5rAQMAzvMKb8+S8OO/Ox6K14OQzx/BHzucPwwyPHg==</latexit><latexit sha1_base64="yJPHyKyT6y/OLrLGC4HCJILhyC4=">AAAB73icbZBNSwMxEIZn61etX1WPXoJF8CBlVwp6LHrxWMHWQrss2XS2Dc1m1yRbKKV/wosHRbz6d7z5b0zbPWjrC4GHd2bIzBumgmvjut9OYW19Y3OruF3a2d3bPygfHrV0kimGTZaIRLVDqlFwiU3DjcB2qpDGocDHcHg7qz+OUGmeyAczTtGPaV/yiDNqrNUeBbULIoJaUK64VXcusgpeDhXI1QjKX91ewrIYpWGCat3x3NT4E6oMZwKnpW6mMaVsSPvYsShpjNqfzPedkjPr9EiUKPukIXP398SExlqP49B2xtQM9HJtZv5X62QmuvYnXKaZQckWH0WZICYhs+NJjytkRowtUKa43ZWwAVWUGRtRyYbgLZ+8Cq3Lqmf5vlap3+RxFOEETuEcPLiCOtxBA5rAQMAzvMKb8+S8OO/Ox6K14OQzx/BHzucPwwyPHg==</latexit>

V = {v1, v2, v3, v4}
<latexit sha1_base64="nfL8F36piK6VMP5wsXx2mxkAF0w=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCCylJLehGKLpxWcE+oAlhMp22QycPZiaFEgpu/BU3LhRx60+482+ctFlo64G5HM65lzv3+DFnUlnWt1FYWV1b3yhulra2d3b3zP2DlowSQWiTRDwSHR9LyllIm4opTjuxoDjwOW37o9vMb4+pkCwKH9Qkpm6AByHrM4KVljzzqIWukZOOPfscjb1qVi6yUnOmnlm2KtYMaJnYOSlDjoZnfjm9iCQBDRXhWMqubcXKTbFQjHA6LTmJpDEmIzygXU1DHFDpprMbpuhUKz3Uj4R+oUIz9fdEigMpJ4GvOwOshnLRy8T/vG6i+lduysI4UTQk80X9hCMVoSwQ1GOCEsUnmmAimP4rIkMsMFE6tpIOwV48eZm0qhVb8/tauX6Tx1GEYziBM7DhEupwBw1oAoFHeIZXeDOejBfj3fiYtxaMfOYQ/sD4/AEHRpU0</latexit><latexit sha1_base64="nfL8F36piK6VMP5wsXx2mxkAF0w=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCCylJLehGKLpxWcE+oAlhMp22QycPZiaFEgpu/BU3LhRx60+482+ctFlo64G5HM65lzv3+DFnUlnWt1FYWV1b3yhulra2d3b3zP2DlowSQWiTRDwSHR9LyllIm4opTjuxoDjwOW37o9vMb4+pkCwKH9Qkpm6AByHrM4KVljzzqIWukZOOPfscjb1qVi6yUnOmnlm2KtYMaJnYOSlDjoZnfjm9iCQBDRXhWMqubcXKTbFQjHA6LTmJpDEmIzygXU1DHFDpprMbpuhUKz3Uj4R+oUIz9fdEigMpJ4GvOwOshnLRy8T/vG6i+lduysI4UTQk80X9hCMVoSwQ1GOCEsUnmmAimP4rIkMsMFE6tpIOwV48eZm0qhVb8/tauX6Tx1GEYziBM7DhEupwBw1oAoFHeIZXeDOejBfj3fiYtxaMfOYQ/sD4/AEHRpU0</latexit><latexit sha1_base64="nfL8F36piK6VMP5wsXx2mxkAF0w=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCCylJLehGKLpxWcE+oAlhMp22QycPZiaFEgpu/BU3LhRx60+482+ctFlo64G5HM65lzv3+DFnUlnWt1FYWV1b3yhulra2d3b3zP2DlowSQWiTRDwSHR9LyllIm4opTjuxoDjwOW37o9vMb4+pkCwKH9Qkpm6AByHrM4KVljzzqIWukZOOPfscjb1qVi6yUnOmnlm2KtYMaJnYOSlDjoZnfjm9iCQBDRXhWMqubcXKTbFQjHA6LTmJpDEmIzygXU1DHFDpprMbpuhUKz3Uj4R+oUIz9fdEigMpJ4GvOwOshnLRy8T/vG6i+lduysI4UTQk80X9hCMVoSwQ1GOCEsUnmmAimP4rIkMsMFE6tpIOwV48eZm0qhVb8/tauX6Tx1GEYziBM7DhEupwBw1oAoFHeIZXeDOejBfj3fiYtxaMfOYQ/sD4/AEHRpU0</latexit><latexit sha1_base64="nfL8F36piK6VMP5wsXx2mxkAF0w=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCCylJLehGKLpxWcE+oAlhMp22QycPZiaFEgpu/BU3LhRx60+482+ctFlo64G5HM65lzv3+DFnUlnWt1FYWV1b3yhulra2d3b3zP2DlowSQWiTRDwSHR9LyllIm4opTjuxoDjwOW37o9vMb4+pkCwKH9Qkpm6AByHrM4KVljzzqIWukZOOPfscjb1qVi6yUnOmnlm2KtYMaJnYOSlDjoZnfjm9iCQBDRXhWMqubcXKTbFQjHA6LTmJpDEmIzygXU1DHFDpprMbpuhUKz3Uj4R+oUIz9fdEigMpJ4GvOwOshnLRy8T/vG6i+lduysI4UTQk80X9hCMVoSwQ1GOCEsUnmmAimP4rIkMsMFE6tpIOwV48eZm0qhVb8/tauX6Tx1GEYziBM7DhEupwBw1oAoFHeIZXeDOejBfj3fiYtxaMfOYQ/sD4/AEHRpU0</latexit>

vi
<latexit sha1_base64="b9ZJ3PUPhKj8cz/U+82ttOOzhHo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aRdutmE3U2hhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH47t5vT1BpXksn8w0QT+iQ8lDzqix1uOkz/vlilt1FyLr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFbqpRoTysZ0iF2Lkkao/Wyx6oxcWGdAwljZJw1ZuL8nMhppPY0C2xlRM9Krtbn5X62bmvDGz7hMUoOSLT8KU0FMTOZ3kwFXyIyYWqBMcbsrYSOqKDM2nZINwVs9eR1aV1XP8sN1pX6bx1GEMziHS/CgBnW4hwY0gcEQnuEV3hzhvDjvzseyteDkM6fwR87nD12GjdY=</latexit><latexit sha1_base64="b9ZJ3PUPhKj8cz/U+82ttOOzhHo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aRdutmE3U2hhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH47t5vT1BpXksn8w0QT+iQ8lDzqix1uOkz/vlilt1FyLr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFbqpRoTysZ0iF2Lkkao/Wyx6oxcWGdAwljZJw1ZuL8nMhppPY0C2xlRM9Krtbn5X62bmvDGz7hMUoOSLT8KU0FMTOZ3kwFXyIyYWqBMcbsrYSOqKDM2nZINwVs9eR1aV1XP8sN1pX6bx1GEMziHS/CgBnW4hwY0gcEQnuEV3hzhvDjvzseyteDkM6fwR87nD12GjdY=</latexit><latexit sha1_base64="b9ZJ3PUPhKj8cz/U+82ttOOzhHo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aRdutmE3U2hhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH47t5vT1BpXksn8w0QT+iQ8lDzqix1uOkz/vlilt1FyLr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFbqpRoTysZ0iF2Lkkao/Wyx6oxcWGdAwljZJw1ZuL8nMhppPY0C2xlRM9Krtbn5X62bmvDGz7hMUoOSLT8KU0FMTOZ3kwFXyIyYWqBMcbsrYSOqKDM2nZINwVs9eR1aV1XP8sN1pX6bx1GEMziHS/CgBnW4hwY0gcEQnuEV3hzhvDjvzseyteDkM6fwR87nD12GjdY=</latexit><latexit sha1_base64="b9ZJ3PUPhKj8cz/U+82ttOOzhHo=">AAAB6nicbZBNS8NAEIYn9avWr6pHL4tF8FQSEeqx6MVjRfsBbSib7aRdutmE3U2hhP4ELx4U8eov8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH47t5vT1BpXksn8w0QT+iQ8lDzqix1uOkz/vlilt1FyLr4OVQgVyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFbqpRoTysZ0iF2Lkkao/Wyx6oxcWGdAwljZJw1ZuL8nMhppPY0C2xlRM9Krtbn5X62bmvDGz7hMUoOSLT8KU0FMTOZ3kwFXyIyYWqBMcbsrYSOqKDM2nZINwVs9eR1aV1XP8sN1pX6bx1GEMziHS/CgBnW4hwY0gcEQnuEV3hzhvDjvzseyteDkM6fwR87nD12GjdY=</latexit>

li = l()
<latexit sha1_base64="7hk69Uwo+396HBeyO/ev8QXQV1c=">AAAB/HicbZDLSsNAFIZPvNZ6i3bpZrAIdVMSEXQjFN24rGAv0IYwmUzaoZOLMxMhhPoqblwo4tYHcefbOE2z0NYDM3z8/znMmd9LOJPKsr6NldW19Y3NylZ1e2d3b988OOzKOBWEdkjMY9H3sKScRbSjmOK0nwiKQ4/Tnje5mfm9Ryoki6N7lSXUCfEoYgEjWGnJNWvcZegK8cbwIcV+cZ26Zt1qWkWhZbBLqENZbdf8GvoxSUMaKcKxlAPbSpSTY6EY4XRaHaaSJphM8IgONEY4pNLJi+Wn6EQrPgpioU+kUKH+nshxKGUWerozxGosF72Z+J83SFVw6eQsSlJFIzJ/KEg5UjGaJYF8JihRPNOAiWB6V0TGWGCidF5VHYK9+OVl6J41bc135/XWdRlHBY7gGBpgwwW04Bba0AECGTzDK7wZT8aL8W58zFtXjHKmBn/K+PwBTtuT5Q==</latexit><latexit sha1_base64="7hk69Uwo+396HBeyO/ev8QXQV1c=">AAAB/HicbZDLSsNAFIZPvNZ6i3bpZrAIdVMSEXQjFN24rGAv0IYwmUzaoZOLMxMhhPoqblwo4tYHcefbOE2z0NYDM3z8/znMmd9LOJPKsr6NldW19Y3NylZ1e2d3b988OOzKOBWEdkjMY9H3sKScRbSjmOK0nwiKQ4/Tnje5mfm9Ryoki6N7lSXUCfEoYgEjWGnJNWvcZegK8cbwIcV+cZ26Zt1qWkWhZbBLqENZbdf8GvoxSUMaKcKxlAPbSpSTY6EY4XRaHaaSJphM8IgONEY4pNLJi+Wn6EQrPgpioU+kUKH+nshxKGUWerozxGosF72Z+J83SFVw6eQsSlJFIzJ/KEg5UjGaJYF8JihRPNOAiWB6V0TGWGCidF5VHYK9+OVl6J41bc135/XWdRlHBY7gGBpgwwW04Bba0AECGTzDK7wZT8aL8W58zFtXjHKmBn/K+PwBTtuT5Q==</latexit><latexit sha1_base64="7hk69Uwo+396HBeyO/ev8QXQV1c=">AAAB/HicbZDLSsNAFIZPvNZ6i3bpZrAIdVMSEXQjFN24rGAv0IYwmUzaoZOLMxMhhPoqblwo4tYHcefbOE2z0NYDM3z8/znMmd9LOJPKsr6NldW19Y3NylZ1e2d3b988OOzKOBWEdkjMY9H3sKScRbSjmOK0nwiKQ4/Tnje5mfm9Ryoki6N7lSXUCfEoYgEjWGnJNWvcZegK8cbwIcV+cZ26Zt1qWkWhZbBLqENZbdf8GvoxSUMaKcKxlAPbSpSTY6EY4XRaHaaSJphM8IgONEY4pNLJi+Wn6EQrPgpioU+kUKH+nshxKGUWerozxGosF72Z+J83SFVw6eQsSlJFIzJ/KEg5UjGaJYF8JihRPNOAiWB6V0TGWGCidF5VHYK9+OVl6J41bc135/XWdRlHBY7gGBpgwwW04Bba0AECGTzDK7wZT8aL8W58zFtXjHKmBn/K+PwBTtuT5Q==</latexit><latexit sha1_base64="7hk69Uwo+396HBeyO/ev8QXQV1c=">AAAB/HicbZDLSsNAFIZPvNZ6i3bpZrAIdVMSEXQjFN24rGAv0IYwmUzaoZOLMxMhhPoqblwo4tYHcefbOE2z0NYDM3z8/znMmd9LOJPKsr6NldW19Y3NylZ1e2d3b988OOzKOBWEdkjMY9H3sKScRbSjmOK0nwiKQ4/Tnje5mfm9Ryoki6N7lSXUCfEoYgEjWGnJNWvcZegK8cbwIcV+cZ26Zt1qWkWhZbBLqENZbdf8GvoxSUMaKcKxlAPbSpSTY6EY4XRaHaaSJphM8IgONEY4pNLJi+Wn6EQrPgpioU+kUKH+nshxKGUWerozxGosF72Z+J83SFVw6eQsSlJFIzJ/KEg5UjGaJYF8JihRPNOAiWB6V0TGWGCidF5VHYK9+OVl6J41bc135/XWdRlHBY7gGBpgwwW04Bba0AECGTzDK7wZT8aL8W58zFtXjHKmBn/K+PwBTtuT5Q==</latexit>

Fig. 3.1 Example of formal elements in a function call graph

Intuitively, the extracted function call graphs are directed graphs containing
a node for each of the functions found in the binary and edges from callers to
callees. Moreover, a labeled function call graph can be constructed, as shown
in Figure 3.1 by attaching a label to each node. Formally, this graph can be
represented as a 4-tuple G = (V,E, L, ℓ), where V is a finite set of nodes and
each node v ∈ V is associated with one of the functions. E ⊆ V × V denotes
the set of directed edges, where an edge from a node v1 to a node v2 indicates
a call from the function represented by v1 to the function represented by v2.
Finally, L is the multiset of labels in the graph and ℓ : V → L is a labeling
function, which assigns a label to each node by considering properties of the
function it represents.

The design of the labeling function ℓ is crucial for the success of our method.
While in principle, a unique label could be assigned to each node, this would not
allow the method to exploit properties shared between functions. By contrast, a
suitable labeling function maps two nodes onto the same label if their functions
share properties relevant to the detection task. Moreover, labeling must be
robust against small changes in the code such as identifier renaming or branch
inversion. To meet these requirements, we propose to label nodes according to
the type of the instructions contained in their respective functions.

In particular, we rely on the specification of the intermediate language
(IL) used by Radare2 and known as Evaluable Strings Intermediate Language
(ESIL) [1]. ESIL is a low-level IL designed with the goal of evaluating and

44 Analysis

emulating binary code for a wide range of architectures and whose instructions
implicitly specify all side-effects.

Reviewing the ESIL specification, we define 38 distinct instruction categories
based on their functionality as shown in Figure 3.2. Each node can thus be
labeled using a 38-bit field, where each bit is associated with one of the
categories.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180

loa
d

ro
l

sa
l

po
p

uc
all

inv
ali
d

io cjm
p

sa
r

ro
r

nu
ll

sw
i

ujm
p

cm
ov

xo
r

su
b

sh
r

re
t

an
d

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 34 3719

ca
ll

m
ul

sto
re

lea jm
p

m
ov no
t

no
p

no
ne

un
de
fin
ed

sh
l

ac
m
p

tra
p

pu
sh div up
us
h

or cm
p

ad
d

Category

Bit

Category

Bit

Fig. 3.2 ESIL instruction categories and their corresponding bit in the label
assigned to each node.

Formally, the function ℓ can be defined as follows: We denote the set of
categories by C = {c1, c2, · · · , cm} and the function associated with a node v

by fv. The label ℓ(v) of a node v ∈ V is then a bit field of length m, i.e.,
ℓ(v) = [b1(v), b2(v), · · · , bm(v)] where

bc(v) =




1 if fv contains an instruction from category c

0 otherwise.

Consequently, the set of labels L is given by a subset of all possible 38-bit
sequences. As an example, Figure 3.3 shows the disassembled code of a function
and the categories assigned to each of its instructions. Note that the function
contains the jg and je instructions, which are used to conditionally jump to
another address after a comparison. These instructions are part of a set of
instructions denoted as cjmp and associated with the eight bit of the label.
The eight bit is therefore set in the resulting function label.

3.3 Explicit Graph Embeddings for Malware

Based on our function call graph representation, we aim at designing an
approach that allows us to train a machine learning algorithm for malware
classification. We have two goals in particular. First, we want to obtain a
numerical vector representation that captures the behavior of a function and
its environment. Second, it should be possible to move from the decisions of

3.3 Explicit Graph Embeddings for Malware 45

 fcn.00000240 ();
 0x00000240 mov eax, dword [rsp + 0xc]
 0x00000244 mov ecx, dword [0x005626b2]
 0x0000024a add eax, 0x4f
 0x0000024d cmp ecx, 2
 ┌─< 0x00000250 jg 0x258
 │ 0x00000252 sub eax, dword [0x005626d0]
 └─> 0x00000258 sub dword [0x005626c7], 0x79
 0x0000025f mov ecx, dword [0x005626d9]
 0x00000265 sub eax, 0xa
 0x00000268 test ecx, ecx
 ┌─< 0x0000026a je 0x282
 │ 0x0000026c mov ecx, dword [0x0056271a]
 │ 0x00000272 test ecx, ecx
 ┌──< 0x00000274 je 0x282
 ││ 0x00000276 movabs dword [0x24342d8300562468], eax
 ││ 0x0000027f push rsi
 ││ 0x00000280 add byte [rdi], ch
 └└─> 0x00000282 mov al, 0x82
 0x00000284 ret 0x10

mov
mov
add
cmp

cjmp
sub
sub
mov
sub

acmp
cjmp
mov

acmp
cjmp
mov

upush
add
mov
ret

25
25
19
37
8

16
16
25
16
31
8

25
31
8

25
35
19
25
18

Instructions Category Bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3719Bit
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 10 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 11Label

Fig. 3.3 Labeling example of a function from its code. Every opcode belongs to
a category, which is a associated to a certain bit in the label.

the classifier back to the input feature space. This would allow the analyst to
dig into the functioning of the classifier and better understand the behavior of
a malware sample.

Therefore, we want to identify subgraphs of the function call graph repre-
senting code of a characteristic malware family. This is, however, not trivial,
in particular since no polynomial time solution exists to test whether two
graphs are isomorphic. In consequence, several solutions have been developed
for inexact matching. Some of these methods rely on suboptimal strategies
such as the graph edit distance [71] or the identification of maximum common
subgraphs, while other ad hoc solutions propose the serialization of the graph
structure [20] as a way to measure similarity. In most setups, this similarity
metric is later used in a neighbor search to identify close candidates to a test
sample.

Graph kernels have emerged as a solution to let kernel-based machine
learning algorithms operate efficiently in the graph space. A graph kernel is,
in short, a kernel function that computes an inner product on graphs. These
kernels have been proposed at several occasions to address graph classification

46 Analysis

problems in chemistry and bioinformatics, however, their applicability to static
malware analysis remains largely unexplored.

In the following, we introduce the different steps of our approach to efficiently
build an explicit embedding for function call graphs.

3.3.1 Hashing of Neighborhoods

Upon labeling nodes in the function call graph, each function is characterized
by the instructions it contains. However, our method strives to model the
composition of functions and thus the neighborhood of a function must be
taken into account. To this end, for each node, we compute a neighborhood
hash over all of its direct neighbors in the function call graph, a procedure
inspired by the neighborhood hash graph kernel (NHGK) originally proposed
by Hido and Kashima [69].

The NHGK is a so called decomposition kernel as defined by Haussler [67].
As such, it is a kernel operating over an enumerable set of subgraphs in a
labeled graph. It has low computational complexity and high expressiveness of
the graph structure, but its main advantage is that it is able to run in time
linear in the number of nodes and can therefore process graphs with thousands
of nodes such as the function call graphs of malware binaries.

The main idea behind the NHGK is to condense the information contained
in a neighborhood into a single hash value. This value is calculated over the
labels of a neighborhood and represents the distribution of the labels around a
central node. It thus allows us to enumerate all neighborhood subgraphs in
linear time without running an isomorphism test over all pairs of neighborhoods.

The computation of the hash for a given node v and its set of adjacent
nodes Vv is defined by the operation

h(v) = r(ℓ(v)) ⊕
(⊕

z∈Vv

ℓ(z)

)
(3.1)

where ⊕ represents a bit-wise XOR on the binary labels and r denotes a
single-bit rotation to the left. This computation can be carried out in constant
time for each node, more specifically in Θ(md) time where d is the maximum
outdegree and m the length of the binary label.

The neighborhood hash of a complete graph G denoted by Gh = h(G) =

(V,E, Lh, h(·)) is then obtained by calculating hashes for each node individually
and replacing the original labels with the calculated hash values. This creates

3.3 Explicit Graph Embeddings for Malware 47

an additional linear dependence of the computation time on the number of
nodes in the graph. Furthermore, it can be noted that the hash values have
the same length m as the original label. However, they aggregate information
spread across neighboring nodes. Moreover, the hash values are independent
of the actual order in which children are processed, and thus sorting is not
necessary.

Hido and Kashima also consider applying the neighborhood hash iteratively
to aggregate information across neighbors up to a path length p. The neigh-
borhood hash of order p can then be defined recursively as G(p+1) = h(Gp).
Choosing p larger than one still allows to construct a valid decomposition kernel,
however, higher values of p also lead to an increased number of overlapping
substructures.

Since we are particularly interested in designing an explicit representation
of the kernel feature space that is easy to interpret by analysts, we thus fix
p = 1 in order to limit the complexity of the feature space.

3.3.2 Feature Space Embedding

Some graph kernels are designed to operate only on unlabeled graphs or are
unable to be evaluated on graphs with more than a few hundreds of nodes.
Moreover, many of these kernels induce only an implicit feature space, which
makes it impossible to determine the features predominantly responsible for
the classification of a sample.

The use of graph kernels for the task of malware triage allows to abstract
the code into a representation that enables learning its underlying structure.
However, function call graphs have thousands of nodes and are characterized
as directed labeled graphs. Therefore, it is necessary to apply a graph kernel
that can not only deal with these specificities, but can also operate on a large
number of nodes efficiently.

The neighborhood hash graph kernel function, evaluates the count of com-
mon identical substructures in two graphs, which after the hashing, is the
number of shared node labels. Considering that several nodes can be labeled
with the same hash, the kernel value can be represented as the size of the
intersection of the multisets Lh and L′

h for two function call graphs Gh and G′
h,

that is,

K(Gh, G
′
h) = |Lh ∩ L′

h| (3.2)

48 Analysis

For the specific application of malware analysis, our goal is to find an
explicit representation that is equivalent to that of the graph kernel. In this
vector space, a linear SVM can be used to learn a model that is able to (a)
classify samples into different families and (b) allows for an interpretation of
its decisions. In order to achieve this, we abstain from using the implicit kernel
function K, but instead embed every sample in a feature space whose inner
product is equivalent to the graph kernel.

To this end, we start by considering the histogram of the multiset Lh as
H = {a1, a2, · · · , aN}, where ai ∈ N indicates the occurrences of the i-th hash
in Gh. The number of shared elements between two multisets can be calculated
by sorting all elements of a certain type and counting the minimum number of
elements of this type that are present in both multisets. This is known as the
multiset intersection. If the size of the intersection of two histograms H and
H ′ of length N is defined as

S(H,H ′) =
N∑

i=1

min(ai, a
′
i) (3.3)

it becomes apparent that the kernel defined in Eq. (3.2) can be also phrased
using the intersection of the histograms for two graphs Gh and G′

h as

K(Gh, G
′
h) = S(H,H ′). (3.4)

Barla et al. [6] show that this histogram intersection can be indeed adopted
in kernel-based methods and propose a feature mapping, such that S is an
inner product in the induced vector space. For this purpose, each histogram H

is mapped to a P -dimensional vector ϕ(H) as follows

ϕ(H) =




a1︷ ︸︸ ︷
1, · · · , 1,

M−a1︷ ︸︸ ︷
0, · · · , 0,︸ ︷︷ ︸

bin 1

· · · ,
aN︷ ︸︸ ︷

1, · · · , 1,
M−aN︷ ︸︸ ︷

0, · · · , 0︸ ︷︷ ︸
bin N


 (3.5)

where M is the maximum value of all bins in the dataset, N is the number of
bins in each histogram and P = NM is the dimension of the vector.

In this representation, each bin i of the histogram is associated with M

dimensions in the vector space. These dimensions are filled with 1’s according
to the value of ai, whereas the remaining M − ai dimensions are set to 0. As a
result, the sum of the M dimensions associated with the i-th bin is equal to ai

and moreover the sum of all dimensions in ϕ(H) is equal to the sum of all bins
in the histogram.

3.3 Explicit Graph Embeddings for Malware 49

By putting the different steps together, we can finally show that the in-
ner product in the vector space induced by Eq. (3.5) indeed resembles the
neighborhood hash graph kernel given in Eq. (3.2). That is, we have

K(Gh, G
′
h) = S(H,H ′) = ⟨ϕ(H), ϕ(H ′)⟩. (3.6)

The interested reader is referred to the original work of Barla et al. [6], which
provides a more detailed analysis of histogram intersections and this mapping.

The mapping ϕ finally allows us to embed every call graph in a feature
space, where a linear SVM can be used for efficiently learning with hundreds of
thousands of graphs each containing thousands of nodes and edges.

3.3.3 Learning and Feature Analysis

As discussed in Section 3.1, malware plays a central role for the analyst when
trying to attribute a targeted attack. Given a series of known malware families,
where all samples in a family share a similar behavior, the problem of triaging
new malware can be posed as a multiclass classification problem for C classes
and solved by means of a linear SVM, which learns a linear separation with a
maximum margin [46] of the given classes in a one-vs-all fashion. Following
this strategy, one linear classifier is fitted per class against the rest of C − 1

classes, allowing for computational efficiency and interpretability.

This approach results in the algorithm learning C classifiers. Each one with
a decision function of the linear SVM fc for c ∈ {1, . . . , C} and given by

fc(Gh) = ⟨ϕ(H), wc⟩+ bc, (3.7)

where wc ∈ RP is the direction of the hyperplane for class c and bc the offset
from the origin of the vector space. In this setting, a function call graph Gh is
assigned to the class corresponding to the classifier with the highest confidence
score. That is

ŷ = argmax
c∈{1,...,C}

fc(Gh) (3.8)

In order to identify what substructures of Gh contribute to this decision, it
is necessary to reverse the expansion performed in Eq. (3.5). In particular, we
compute an aggregated weight ŵi

c for each bin i of the histogram (corresponding
to the i hash value of the graph Gh). Formally, this is achieved for the i-th bin

50 Analysis

of the histogram as follows

ŵi
c =

(i+1)M∑

j=iM

wj
c . (3.9)

The largest of these aggregated weights allows us to highlight those neigh-
borhoods in a given graph Gh that predominantly influence the decision and
can be interpreted as typically belonging to that class. That is, if the weight
ŵi

c of the i-th bin is large, all nodes labeled with the corresponding hash value
significantly contribute to the decision of the SVM and thus likely reflect the
distinct functionality of the malware family represented by the corresponding
class.

3.4 Learning Graph Embeddings for Malware Classification

In the previous section, we have discussed how our representation based on
function call graphs allows us to triage malware samples by leveraging the
structural relations in their binary code. Moreover, we discuss how to build
an explicit feature space for learning on graphs which, in combination with a
linear machine learning classifier, enables the analyst to recover the original
input space and therefore better understand its output decisions.

This approach, however, presents a trade-off between explainability and
complexity due to the fact that the resulting feature space is very high dimen-
sional and needs to be expertly designed beforehand. Hence, in this section,
we aim at designing an alternative method that can work at the other end of
this trade-off, without sacrificing performance and also operating directly on
graphs.

To this end, we propose a method based on deep neural networks that allow
us to learn a low-dimensional representation for call graphs. In particular, we
rely on Dai’s structure2vec [37], an approach based on the idea of embedding
latent variable models into feature spaces, and learning such feature spaces using
discriminative information. As we will see, using this approach in combination
with a siamese network configuration, let us build a trainable system that maps
the function call graphs to a low-dimensional space where the distance between
samples of the same family is small and large otherwise.

3.4 Learning Graph Embeddings for Malware Classification 51

In the following, we explain in detail how we use these techniques to learn
function call graph embeddings for malware classification and then, proceed to
compare both approaches and their performance through different experiments
in Section 3.5.

3.4.1 Graph Embedding Network

As argued by Dai et al. [37], kernel methods have achieved state-of-the-art
performance when used in combination with standard machine learning classi-
fiers. However, they suffer from certain limitations. For instance, the success
of kernel methods on structure data relies on the expert design of the kernel
function. As described in our explicit approach in Section 3.3, this class of ker-
nels are designed around the idea of "bag of structures", where each structured
data point is represented as a vector of counts of substructures. Therefore,
the feature space defined by these kernels is fixed before learning with each
dimension corresponding to a substructure, independent of the supervised
learning problem and without allowing to take advantage of any discriminative
information available. In addition, the number of substructures in structure
data is typically large, as is the case of function call graphs in binaries, resulting
this approach in very high dimensional spaces. Moreover, learning algorithms
operating on pairwise kernel values require the kernel matrix to be computed
in advance. Having this a square dependency with the number of samples, it is
computational expensive for these methods to scale up to very large datasets.

Dai’s structure2vec algorithm addresses to certain extent some of these
issues by modeling each graph as a latent variable model and embedding the
graphical model into a feature space which is learned by minimizing an empirical
loss defined by label information.

In a similar fashion to the neighborhood hash approach described in Sec-
tion 3.3.1, structure2vec aggregates node features recursively by following the
topology of the graph. A d-dimensional feature vector µv for each node is
initialized to zero and then updated through I iterations. After all iterations
the feature vector of each node contains information of its neighborhood up to
a depth I. In contrast to the neighborhood hash algorithm, however, neighbor-
hood information is aggregated through a non-linear mapping that operates
iteratively on the original label l(v).

Algorithm 1 describes in detail the steps to generate the mapping ϕs2v
W . This

mapping receives a call graph g as input and is modeled as a neural network
characterized by the set of parameters W := {W1,W2,W3}. Accordingly, W1

52 Analysis

Algorithm 1 Parameterized Graph Embedding
Input: g = (V,E, L, ℓ)
Output: ϕs2v

W

1: µ
(0)
v ← 0,∀v ∈ V

2: for i = 1 to I do
3: for v ∈ V do
4: µi+1

v = σ(W1l(v) +W2(
∑

z∈Vv
µi
z))

5: end for
6: end for
7: return ϕs2v

W := W3(
∑

v∈V µI
v)

is a matrix with dimensions l × d, being l the size of the node label and d the
dimension of the final feature space. W2 and W3 have dimensions d× d and
σ(·) is a rectifier linear unit, such that ReLU(x) = max{0, x}.

In the following, we discuss the architecture and optimization setup that
allow us to obtain the values for W that minimize and maximize intraclass and
interclass distances respectively in the resulting low-dimensional feature space.

3.4.2 Parameterization with Siamese Architecture

Based on an original idea from Baldi et al. [5], the siamese network architecture
was proposed by Bromley et al. [14] in 1993 for verifying signatures on a
pen-input tablet. It employs two identical neural networks whose inputs are
used to compare two samples with one output that indicates the similarity
between them. In 2005, Hadsell and Chopra [62, 26] introduced an approach
that relies on this architecture for dimensionality reduction by learning an
invariant mapping that leverages discriminative information from the input
space.

Adapting their vector notation to our graph representation, we can formalize
the problem of finding a function that maps function call graphs to a lower
dimensional space as follows. Given a set of input graphs G = {G1, . . . , Gn} we
aim at finding a parametric function ϕW : G −→ Rd with d≪ P , where P is
the dimension of the explicit feature vector ϕ(H) in equation 3.5. The mapping
ϕW should allow for distance measures in the output space to approximate the
relationships in the input space trough invariances to complex transformations
and being able to generalize for graphs yet unseen. That is, function call graphs
that belong to the same family should be mapped to nearby points in the
output manifold or to distant points otherwise.

3.4 Learning Graph Embeddings for Malware Classification 53

Taking the euclidean distance as the metric to be accordingly minimized or
maximized in the output space, Hadsell et al. introduce the contrastive loss
function, whose minimization can produce the mapping ϕW without reaching a
collapsed solution. Being DW the parameterized distance function to be learned

DW (G1, G2) = ∥ϕW (G1)− ϕW (G2)∥2 (3.10)

the loss function is defined by

L(W,Y,G1, G2) =

(1− Y)
1

2
(DW (G1, G2))

2 + (Y)
1

2
{max(0,m−DW (G1, G2))}2

(3.11)

where m > 0 is a radius around ϕW (G), so that only dissimilar pairs with a
distance within this radius contribute to the loss function.

Because we want our approach to operate directly in the graph space at the
input, we design a siamese architecture as shown in Figure 3.4, where the two
copies of GW are structure2vec networks that share the same set of parameters
W . The output of the siamese network is used as input for the loss function.

Then, in order to train the network, we define a learning set of graphs and
pair each one of them will all the rest. The resulting pairs are then labeled
Y = 0 if they belong to the same family or Y = 1 otherwise. The pairs of graphs
are fed to the network and the contrastive loss is computed as a function of the
expected label, updating the parameters of the network W trough stochastic
gradient.

G1
<latexit sha1_base64="k0VrF+xRMAmd2PvYh8GzQPfA2k4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx4rmLbQhrLZbtqlm03YnQgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fCoZZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK3g7HtzO//cS1EYl6xEnKg5gOlYgEo2gl/66fe9N+tebW3TnIKvEKUoMCzX71qzdIWBZzhUxSY7qem2KQU42CST6t9DLDU8rGdMi7lioacxPk82On5MwqAxIl2pZCMld/T+Q0NmYSh7Yzpjgyy95M/M/rZhhdB7lQaYZcscWiKJMEEzL7nAyE5gzlxBLKtLC3EjaimjK0+VRsCN7yy6ukdVH33Lr3cFlr3BRxlOEETuEcPLiCBtxDE3xgIOAZXuHNUc6L8+58LFpLTjFzDH/gfP4AhT6Oew==</latexit><latexit sha1_base64="k0VrF+xRMAmd2PvYh8GzQPfA2k4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx4rmLbQhrLZbtqlm03YnQgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fCoZZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK3g7HtzO//cS1EYl6xEnKg5gOlYgEo2gl/66fe9N+tebW3TnIKvEKUoMCzX71qzdIWBZzhUxSY7qem2KQU42CST6t9DLDU8rGdMi7lioacxPk82On5MwqAxIl2pZCMld/T+Q0NmYSh7Yzpjgyy95M/M/rZhhdB7lQaYZcscWiKJMEEzL7nAyE5gzlxBLKtLC3EjaimjK0+VRsCN7yy6ukdVH33Lr3cFlr3BRxlOEETuEcPLiCBtxDE3xgIOAZXuHNUc6L8+58LFpLTjFzDH/gfP4AhT6Oew==</latexit><latexit sha1_base64="k0VrF+xRMAmd2PvYh8GzQPfA2k4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx4rmLbQhrLZbtqlm03YnQgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fCoZZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK3g7HtzO//cS1EYl6xEnKg5gOlYgEo2gl/66fe9N+tebW3TnIKvEKUoMCzX71qzdIWBZzhUxSY7qem2KQU42CST6t9DLDU8rGdMi7lioacxPk82On5MwqAxIl2pZCMld/T+Q0NmYSh7Yzpjgyy95M/M/rZhhdB7lQaYZcscWiKJMEEzL7nAyE5gzlxBLKtLC3EjaimjK0+VRsCN7yy6ukdVH33Lr3cFlr3BRxlOEETuEcPLiCBtxDE3xgIOAZXuHNUc6L8+58LFpLTjFzDH/gfP4AhT6Oew==</latexit><latexit sha1_base64="k0VrF+xRMAmd2PvYh8GzQPfA2k4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRgx4rmLbQhrLZbtqlm03YnQgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkpr6xubW+Xtys7u3v5B9fCoZZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK3g7HtzO//cS1EYl6xEnKg5gOlYgEo2gl/66fe9N+tebW3TnIKvEKUoMCzX71qzdIWBZzhUxSY7qem2KQU42CST6t9DLDU8rGdMi7lioacxPk82On5MwqAxIl2pZCMld/T+Q0NmYSh7Yzpjgyy95M/M/rZhhdB7lQaYZcscWiKJMEEzL7nAyE5gzlxBLKtLC3EjaimjK0+VRsCN7yy6ukdVH33Lr3cFlr3BRxlOEETuEcPLiCBtxDE3xgIOAZXuHNUc6L8+58LFpLTjFzDH/gfP4AhT6Oew==</latexit>

G2
<latexit sha1_base64="unTU/a02OHl0mSJ7UzDrIxIzo40=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiBz1WtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw22/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6RVq3pu1bu/qNSv8ziKcAKncA4eXEId7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPCf41w</latexit><latexit sha1_base64="unTU/a02OHl0mSJ7UzDrIxIzo40=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiBz1WtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw22/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6RVq3pu1bu/qNSv8ziKcAKncA4eXEId7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPCf41w</latexit><latexit sha1_base64="unTU/a02OHl0mSJ7UzDrIxIzo40=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiBz1WtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw22/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6RVq3pu1bu/qNSv8ziKcAKncA4eXEId7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPCf41w</latexit><latexit sha1_base64="unTU/a02OHl0mSJ7UzDrIxIzo40=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiBz1WtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzSRBP6JDyUPOqLHSw22/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6RVq3pu1bu/qNSv8ziKcAKncA4eXEId7qABTWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPCf41w</latexit>

Y = {0, 1}
<latexit sha1_base64="7DWIXM8gdj2AkAxt6sIahbLyOIY=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBg5REBL0IRS8eK9gPaULZbKft0s0m7G6EEvo3vHhQxKt/xpv/xm2bg7Y+GHi8N8PMvDARXBvX/XYKK6tr6xvFzdLW9s7uXnn/oKnjVDFssFjEqh1SjYJLbBhuBLYThTQKBbbC0e3Ubz2h0jyWD2acYBDRgeR9zqixkv9IromfuWfE8yfdcsWtujOQZeLlpAI56t3yl9+LWRqhNExQrTuem5ggo8pwJnBS8lONCWUjOsCOpZJGqINsdvOEnFilR/qxsiUNmam/JzIaaT2OQtsZUTPUi95U/M/rpKZ/FWRcJqlByeaL+qkgJibTAEiPK2RGjC2hTHF7K2FDqigzNqaSDcFbfHmZNM+rnlv17i8qtZs8jiIcwTGcggeXUIM7qEMDGCTwDK/w5qTOi/PufMxbC04+cwh/4Hz+ALCVkCU=</latexit><latexit sha1_base64="7DWIXM8gdj2AkAxt6sIahbLyOIY=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBg5REBL0IRS8eK9gPaULZbKft0s0m7G6EEvo3vHhQxKt/xpv/xm2bg7Y+GHi8N8PMvDARXBvX/XYKK6tr6xvFzdLW9s7uXnn/oKnjVDFssFjEqh1SjYJLbBhuBLYThTQKBbbC0e3Ubz2h0jyWD2acYBDRgeR9zqixkv9IromfuWfE8yfdcsWtujOQZeLlpAI56t3yl9+LWRqhNExQrTuem5ggo8pwJnBS8lONCWUjOsCOpZJGqINsdvOEnFilR/qxsiUNmam/JzIaaT2OQtsZUTPUi95U/M/rpKZ/FWRcJqlByeaL+qkgJibTAEiPK2RGjC2hTHF7K2FDqigzNqaSDcFbfHmZNM+rnlv17i8qtZs8jiIcwTGcggeXUIM7qEMDGCTwDK/w5qTOi/PufMxbC04+cwh/4Hz+ALCVkCU=</latexit><latexit sha1_base64="7DWIXM8gdj2AkAxt6sIahbLyOIY=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBg5REBL0IRS8eK9gPaULZbKft0s0m7G6EEvo3vHhQxKt/xpv/xm2bg7Y+GHi8N8PMvDARXBvX/XYKK6tr6xvFzdLW9s7uXnn/oKnjVDFssFjEqh1SjYJLbBhuBLYThTQKBbbC0e3Ubz2h0jyWD2acYBDRgeR9zqixkv9IromfuWfE8yfdcsWtujOQZeLlpAI56t3yl9+LWRqhNExQrTuem5ggo8pwJnBS8lONCWUjOsCOpZJGqINsdvOEnFilR/qxsiUNmam/JzIaaT2OQtsZUTPUi95U/M/rpKZ/FWRcJqlByeaL+qkgJibTAEiPK2RGjC2hTHF7K2FDqigzNqaSDcFbfHmZNM+rnlv17i8qtZs8jiIcwTGcggeXUIM7qEMDGCTwDK/w5qTOi/PufMxbC04+cwh/4Hz+ALCVkCU=</latexit><latexit sha1_base64="7DWIXM8gdj2AkAxt6sIahbLyOIY=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBg5REBL0IRS8eK9gPaULZbKft0s0m7G6EEvo3vHhQxKt/xpv/xm2bg7Y+GHi8N8PMvDARXBvX/XYKK6tr6xvFzdLW9s7uXnn/oKnjVDFssFjEqh1SjYJLbBhuBLYThTQKBbbC0e3Ubz2h0jyWD2acYBDRgeR9zqixkv9IromfuWfE8yfdcsWtujOQZeLlpAI56t3yl9+LWRqhNExQrTuem5ggo8pwJnBS8lONCWUjOsCOpZJGqINsdvOEnFilR/qxsiUNmam/JzIaaT2OQtsZUTPUi95U/M/rpKZ/FWRcJqlByeaL+qkgJibTAEiPK2RGjC2hTHF7K2FDqigzNqaSDcFbfHmZNM+rnlv17i8qtZs8jiIcwTGcggeXUIM7qEMDGCTwDK/w5qTOi/PufMxbC04+cwh/4Hz+ALCVkCU=</latexit>

�s2v
W (·)

<latexit sha1_base64="G+/2zQaQxnsirCN/YU3hn/lB/0Q=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyUpgi6LblxWsA9oY5hMJu3QyUyYmRRCqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7T5AwqrTjfFuljc2t7Z3ybmVv/+DwyD4+6SqRSkw6WDAh+wFShFFOOppqRvqJJCgOGOkFk9u535sSqajgDzpLiBejEacRxUgbyberw2RM/d5jrprTWX2IQ6EvfLvmNJwF4DpxC1IDBdq+/TUMBU5jwjVmSKmB6yTay5HUFDMyqwxTRRKEJ2hEBoZyFBPl5YvjZ/DcKCGMhDTFNVyovydyFCuVxYHpjJEeq1VvLv7nDVIdXXs55UmqCcfLRVHKoBZwngQMqSRYs8wQhCU1t0I8RhJhbfKqmBDc1ZfXSbfZcJ2Ge39Za90UcZTBKTgDdeCCK9ACd6ANOgCDDDyDV/BmPVkv1rv1sWwtWcVMFfyB9fkDSYCUhA==</latexit><latexit sha1_base64="G+/2zQaQxnsirCN/YU3hn/lB/0Q=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyUpgi6LblxWsA9oY5hMJu3QyUyYmRRCqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7T5AwqrTjfFuljc2t7Z3ybmVv/+DwyD4+6SqRSkw6WDAh+wFShFFOOppqRvqJJCgOGOkFk9u535sSqajgDzpLiBejEacRxUgbyberw2RM/d5jrprTWX2IQ6EvfLvmNJwF4DpxC1IDBdq+/TUMBU5jwjVmSKmB6yTay5HUFDMyqwxTRRKEJ2hEBoZyFBPl5YvjZ/DcKCGMhDTFNVyovydyFCuVxYHpjJEeq1VvLv7nDVIdXXs55UmqCcfLRVHKoBZwngQMqSRYs8wQhCU1t0I8RhJhbfKqmBDc1ZfXSbfZcJ2Ge39Za90UcZTBKTgDdeCCK9ACd6ANOgCDDDyDV/BmPVkv1rv1sWwtWcVMFfyB9fkDSYCUhA==</latexit><latexit sha1_base64="G+/2zQaQxnsirCN/YU3hn/lB/0Q=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyUpgi6LblxWsA9oY5hMJu3QyUyYmRRCqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7T5AwqrTjfFuljc2t7Z3ybmVv/+DwyD4+6SqRSkw6WDAh+wFShFFOOppqRvqJJCgOGOkFk9u535sSqajgDzpLiBejEacRxUgbyberw2RM/d5jrprTWX2IQ6EvfLvmNJwF4DpxC1IDBdq+/TUMBU5jwjVmSKmB6yTay5HUFDMyqwxTRRKEJ2hEBoZyFBPl5YvjZ/DcKCGMhDTFNVyovydyFCuVxYHpjJEeq1VvLv7nDVIdXXs55UmqCcfLRVHKoBZwngQMqSRYs8wQhCU1t0I8RhJhbfKqmBDc1ZfXSbfZcJ2Ge39Za90UcZTBKTgDdeCCK9ACd6ANOgCDDDyDV/BmPVkv1rv1sWwtWcVMFfyB9fkDSYCUhA==</latexit><latexit sha1_base64="G+/2zQaQxnsirCN/YU3hn/lB/0Q=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyUpgi6LblxWsA9oY5hMJu3QyUyYmRRCqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7T5AwqrTjfFuljc2t7Z3ybmVv/+DwyD4+6SqRSkw6WDAh+wFShFFOOppqRvqJJCgOGOkFk9u535sSqajgDzpLiBejEacRxUgbyberw2RM/d5jrprTWX2IQ6EvfLvmNJwF4DpxC1IDBdq+/TUMBU5jwjVmSKmB6yTay5HUFDMyqwxTRRKEJ2hEBoZyFBPl5YvjZ/DcKCGMhDTFNVyovydyFCuVxYHpjJEeq1VvLv7nDVIdXXs55UmqCcfLRVHKoBZwngQMqSRYs8wQhCU1t0I8RhJhbfKqmBDc1ZfXSbfZcJ2Ge39Za90UcZTBKTgDdeCCK9ACd6ANOgCDDDyDV/BmPVkv1rv1sWwtWcVMFfyB9fkDSYCUhA==</latexit>

���s2v
W (G1)� �s2v

W (G2)
��

2
<latexit sha1_base64="qoxKX8Tq7oIIqxYGiJE2ejmsA3s=">AAACJHicbVDLSsNAFJ34rPUVdelmsAjtwpIEQcFN0YUuK9gHNDFMppNm6GQSZiaFEvsxbvwVNy584MKN32LSZqGtBwYO55zLnXu8mFGpDONLW1peWV1bL22UN7e2d3b1vf22jBKBSQtHLBJdD0nCKCctRRUj3VgQFHqMdLzhVe53RkRIGvE7NY6JE6IBpz7FSGWSq1/YjPgK2g/QjgPqdu5TaY0m1WvXrMGTec2qQVvQQZDnXavs6hWjbkwBF4lZkAoo0HT1d7sf4SQkXGGGpOyZRqycFAlFMSOTsp1IEiM8RAPSyyhHIZFOOj1yAo8zpQ/9SGSPKzhVf0+kKJRyHHpZMkQqkPNeLv7n9RLlnzsp5XGiCMezRX7CoIpg3hjsU0GwYuOMICxo9leIAyQQVlmveQnm/MmLpG3VTaNu3p5WGpdFHSVwCI5AFZjgDDTADWiCFsDgETyDV/CmPWkv2of2OYsuacXMAfgD7fsHC+uiiw==</latexit><latexit sha1_base64="qoxKX8Tq7oIIqxYGiJE2ejmsA3s=">AAACJHicbVDLSsNAFJ34rPUVdelmsAjtwpIEQcFN0YUuK9gHNDFMppNm6GQSZiaFEvsxbvwVNy584MKN32LSZqGtBwYO55zLnXu8mFGpDONLW1peWV1bL22UN7e2d3b1vf22jBKBSQtHLBJdD0nCKCctRRUj3VgQFHqMdLzhVe53RkRIGvE7NY6JE6IBpz7FSGWSq1/YjPgK2g/QjgPqdu5TaY0m1WvXrMGTec2qQVvQQZDnXavs6hWjbkwBF4lZkAoo0HT1d7sf4SQkXGGGpOyZRqycFAlFMSOTsp1IEiM8RAPSyyhHIZFOOj1yAo8zpQ/9SGSPKzhVf0+kKJRyHHpZMkQqkPNeLv7n9RLlnzsp5XGiCMezRX7CoIpg3hjsU0GwYuOMICxo9leIAyQQVlmveQnm/MmLpG3VTaNu3p5WGpdFHSVwCI5AFZjgDDTADWiCFsDgETyDV/CmPWkv2of2OYsuacXMAfgD7fsHC+uiiw==</latexit><latexit sha1_base64="qoxKX8Tq7oIIqxYGiJE2ejmsA3s=">AAACJHicbVDLSsNAFJ34rPUVdelmsAjtwpIEQcFN0YUuK9gHNDFMppNm6GQSZiaFEvsxbvwVNy584MKN32LSZqGtBwYO55zLnXu8mFGpDONLW1peWV1bL22UN7e2d3b1vf22jBKBSQtHLBJdD0nCKCctRRUj3VgQFHqMdLzhVe53RkRIGvE7NY6JE6IBpz7FSGWSq1/YjPgK2g/QjgPqdu5TaY0m1WvXrMGTec2qQVvQQZDnXavs6hWjbkwBF4lZkAoo0HT1d7sf4SQkXGGGpOyZRqycFAlFMSOTsp1IEiM8RAPSyyhHIZFOOj1yAo8zpQ/9SGSPKzhVf0+kKJRyHHpZMkQqkPNeLv7n9RLlnzsp5XGiCMezRX7CoIpg3hjsU0GwYuOMICxo9leIAyQQVlmveQnm/MmLpG3VTaNu3p5WGpdFHSVwCI5AFZjgDDTADWiCFsDgETyDV/CmPWkv2of2OYsuacXMAfgD7fsHC+uiiw==</latexit><latexit sha1_base64="qoxKX8Tq7oIIqxYGiJE2ejmsA3s=">AAACJHicbVDLSsNAFJ34rPUVdelmsAjtwpIEQcFN0YUuK9gHNDFMppNm6GQSZiaFEvsxbvwVNy584MKN32LSZqGtBwYO55zLnXu8mFGpDONLW1peWV1bL22UN7e2d3b1vf22jBKBSQtHLBJdD0nCKCctRRUj3VgQFHqMdLzhVe53RkRIGvE7NY6JE6IBpz7FSGWSq1/YjPgK2g/QjgPqdu5TaY0m1WvXrMGTec2qQVvQQZDnXavs6hWjbkwBF4lZkAoo0HT1d7sf4SQkXGGGpOyZRqycFAlFMSOTsp1IEiM8RAPSyyhHIZFOOj1yAo8zpQ/9SGSPKzhVf0+kKJRyHHpZMkQqkPNeLv7n9RLlnzsp5XGiCMezRX7CoIpg3hjsU0GwYuOMICxo9leIAyQQVlmveQnm/MmLpG3VTaNu3p5WGpdFHSVwCI5AFZjgDDTADWiCFsDgETyDV/CmPWkv2of2OYsuacXMAfgD7fsHC+uiiw==</latexit>

�s2v
W (·)

<latexit sha1_base64="G+/2zQaQxnsirCN/YU3hn/lB/0Q=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyUpgi6LblxWsA9oY5hMJu3QyUyYmRRCqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7T5AwqrTjfFuljc2t7Z3ybmVv/+DwyD4+6SqRSkw6WDAh+wFShFFOOppqRvqJJCgOGOkFk9u535sSqajgDzpLiBejEacRxUgbyberw2RM/d5jrprTWX2IQ6EvfLvmNJwF4DpxC1IDBdq+/TUMBU5jwjVmSKmB6yTay5HUFDMyqwxTRRKEJ2hEBoZyFBPl5YvjZ/DcKCGMhDTFNVyovydyFCuVxYHpjJEeq1VvLv7nDVIdXXs55UmqCcfLRVHKoBZwngQMqSRYs8wQhCU1t0I8RhJhbfKqmBDc1ZfXSbfZcJ2Ge39Za90UcZTBKTgDdeCCK9ACd6ANOgCDDDyDV/BmPVkv1rv1sWwtWcVMFfyB9fkDSYCUhA==</latexit><latexit sha1_base64="G+/2zQaQxnsirCN/YU3hn/lB/0Q=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyUpgi6LblxWsA9oY5hMJu3QyUyYmRRCqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7T5AwqrTjfFuljc2t7Z3ybmVv/+DwyD4+6SqRSkw6WDAh+wFShFFOOppqRvqJJCgOGOkFk9u535sSqajgDzpLiBejEacRxUgbyberw2RM/d5jrprTWX2IQ6EvfLvmNJwF4DpxC1IDBdq+/TUMBU5jwjVmSKmB6yTay5HUFDMyqwxTRRKEJ2hEBoZyFBPl5YvjZ/DcKCGMhDTFNVyovydyFCuVxYHpjJEeq1VvLv7nDVIdXXs55UmqCcfLRVHKoBZwngQMqSRYs8wQhCU1t0I8RhJhbfKqmBDc1ZfXSbfZcJ2Ge39Za90UcZTBKTgDdeCCK9ACd6ANOgCDDDyDV/BmPVkv1rv1sWwtWcVMFfyB9fkDSYCUhA==</latexit><latexit sha1_base64="G+/2zQaQxnsirCN/YU3hn/lB/0Q=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyUpgi6LblxWsA9oY5hMJu3QyUyYmRRCqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7T5AwqrTjfFuljc2t7Z3ybmVv/+DwyD4+6SqRSkw6WDAh+wFShFFOOppqRvqJJCgOGOkFk9u535sSqajgDzpLiBejEacRxUgbyberw2RM/d5jrprTWX2IQ6EvfLvmNJwF4DpxC1IDBdq+/TUMBU5jwjVmSKmB6yTay5HUFDMyqwxTRRKEJ2hEBoZyFBPl5YvjZ/DcKCGMhDTFNVyovydyFCuVxYHpjJEeq1VvLv7nDVIdXXs55UmqCcfLRVHKoBZwngQMqSRYs8wQhCU1t0I8RhJhbfKqmBDc1ZfXSbfZcJ2Ge39Za90UcZTBKTgDdeCCK9ACd6ANOgCDDDyDV/BmPVkv1rv1sWwtWcVMFfyB9fkDSYCUhA==</latexit><latexit sha1_base64="G+/2zQaQxnsirCN/YU3hn/lB/0Q=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyUpgi6LblxWsA9oY5hMJu3QyUyYmRRCqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7T5AwqrTjfFuljc2t7Z3ybmVv/+DwyD4+6SqRSkw6WDAh+wFShFFOOppqRvqJJCgOGOkFk9u535sSqajgDzpLiBejEacRxUgbyberw2RM/d5jrprTWX2IQ6EvfLvmNJwF4DpxC1IDBdq+/TUMBU5jwjVmSKmB6yTay5HUFDMyqwxTRRKEJ2hEBoZyFBPl5YvjZ/DcKCGMhDTFNVyovydyFCuVxYHpjJEeq1VvLv7nDVIdXXs55UmqCcfLRVHKoBZwngQMqSRYs8wQhCU1t0I8RhJhbfKqmBDc1ZfXSbfZcJ2Ge39Za90UcZTBKTgDdeCCK9ACd6ANOgCDDDyDV/BmPVkv1rv1sWwtWcVMFfyB9fkDSYCUhA==</latexit>

Fig. 3.4 Siamese architecture with structure2vec networks as function ϕW .

Finally and once that the parameters that minimize the loss function are
found, we can embed a new set of function call graphs by feeding each one of

54 Analysis

them to the trained network ϕs2v
W . The resulting representation can be used

then to train and test a classifier as described in Section 3.4.
In the following, we evaluate both methods for explicit and learned embed-

dings for binary function call graphs on a well labeled malware dataset and
compare their performance and their trade-offs for malware triage and novelty
detection.

3.5 Evaluation

In this section, we proceed to evaluate how our representation based on function
call graphs and the two explicit and learned graph embeddings can be used in
combinations with a series of machine learning algorithms to perform malware
triage in a well known and labeled dataset.

In particular, we explore how the analyst can cluster unknown malware
samples in the absence of labels using our explicit embedding. Then, we
evaluate how clustering results can be improved by labeling some samples and
characterizing them through a learned embedding. Next, we proceed to evaluate
the performance of several algorithms on both embeddings in a supervised
classification setup, where labeled data is available to the analyst and finally,
we tackle the problem of identifying an unseen sample as part of a known family
or as the first member of a new class through anomaly detection.

In the following, we begin introducing our dataset and discussing how we
generate function call graphs from the malware binaries. Then, we continue by
creating different data splits that we use to train and test the classifiers and,
in the case of our learned embedding, to learn the corresponding feature space.

3.5.1 Dataset

To demonstrate how our approaches can help at the task of malware triage, we
focus on binaries that target the Windows platform and evaluate a series of
machine learning algorithms on both embedded representations for function
call graphs.

Therefore, we require a suitable dataset that includes malware from different
families. Taking into account that the building of a proper malware dataset
represents a research problem of its own, we rely in this work on a dataset that,
not without certain constraints, includes high quality family labels assigned
manually by analysts.

3.5 Evaluation 55

Table 3.1 Malware families in the Microsoft Malware Classification dataset

ID Family Name Samples Type

1 Ramnnit 1541 Worm
2 Lollipop 2478 Adware
3 Kelihos_ver3 2942 Backdoor
4 Vundo 475 Trojan
5 Simda 42 Backdoor
6 Tracur 751 TrojanDownloader
7 Kelihos_ver1 398 Backdoor
8 Obfuscator.ACY 1228 Obfuscated (various types)
9 Gatak 1013 Backdoor

In the context of the Microsoft Malware Classification Challenge [128],
Microsoft made available a dataset of nearly 0.5 terabytes containing the
disassembly and bytecode of more than 20,000 malware samples. Table 3.1 lists
the different families and their sample sizes together with the type of malware.
In the first column, we assign an ID to each family that we will use to identify
each class in the following experiments.

3.5.2 Generation of Function Call Graphs

In order to generate individual function call graphs for the binaries in the
dataset, we rely on the Radare2 framework [1]. For this, we make use of
Radare2 Python interface to analyze the provided bytecode files and identify
the corresponding cross-references between functions.

0 500 1000
Node Size Distribution

0.0000

0.0008

0.0016

0.0024

0.0032

0.0040

0.0048

0 25 50 75 100
Neighborhood Size Distribution

0.0000

0.0004

0.0008

0.0012

0.0016

0 2 4 6
Avg. Neighborhood Size Distribution

0.00
0.08
0.16
0.24
0.32
0.40
0.48
0.56

Fig. 3.5 Probability distributions of the number of nodes in function call graph,
the number of nodes in a neighborhood in all graphs and the average size of a
neighborhood in a graph.

The plots in Figure 3.5 depict the probability density function of several
graph characteristics, what provide an idea of the shape and size of the function
call graphs and their substructures. For instance, it can be observed how most

56 Analysis

of the graphs contain less than 500 nodes and how the number of nodes in a
neighborhood tends to be less than 25 for all graphs. If we consider each graph
individually, the last plots shows how the average size of its neighborhoods
stays under 4 nodes.

3.5.3 Function Call Graph Embeddings

In order to evaluate a series of machine learning classifiers on our represen-
tations and compare their performance, we split the dataset into learning,
validation, training and testing sets.

As described in Section 3.4.2, we proceed to train a siamese network in
order to obtain the parameters for the mapping ϕs2v

W . To this end, we use the
learning partition to train the neural network and the validation partition
to select the combination of parameters that achieves the best performance
on unseen data. Figure 3.6 shows the evolution of the loss on training and
validation data in each epoch. It can be observed how further from the epoch
where the best performance on validation data is obtained, the networks keeps
improving the performance on training data but increasing the loss on validation
data due to overfitting.

A usual concern is the need to gather enough data to train a neural network
effectively. However, note that each input to the network is in this case a pair
of graphs resulting from the combination of all graphs in the learning set. In
particular the total number of pairs P that can be fed to the network is given
by

P =
n!

r!(n− r)!
→
r=2

n(n− 1)

2
(3.12)

where n is the number of graphs in the learning set, r is the size of the
unordered subsets (i.e. r = 2) and thus n≪ P, resulting in a relatively large
amount of input pairs.

Once we have determined the parameters for the mapping ϕs2v
W that minimize

the distance between samples from the same family and maximize the distance
between samples otherwise, we use this mapping to embed the training and
testing sets. As discussed in Section 3.4.1, the mapping ϕs2v

W maps a graph
to a vector of dimension d, being the dimensionality of the output space a
parameter that can be found through cross-validation. In this work, we set d

to 1024, assuring thus that d≪ P , where P is the final dimensionality of the
neighborhood hash embedded feature space. Likewise, we follow the methodol-

3.5 Evaluation 57

0 5 10 15 20
Epoch

100

102

104

106

108

1010

1012

Co
ns

tra
st

iv
e

Lo
ss

Minimum
Training Loss
0.108

Minimum
Validation Loss
0.540

Training Validation

Fig. 3.6 Evolution of the training and validation loss per epoch.

ogy described in Section 3.3.2 and generate embeddings for the training and
testing sets using the neighborhood hash.

Up to this point, training an testing sets of function call graphs are embedded
in the feature spaces determined by both our neighborhood hash approach
(NH) and structure2vec-siamese network approach (S2VSN). In the following
we proceed to evaluate how each representation enables different algorithms to
perform on clustering, classification and anomaly detection.

3.5.4 Clustering

In the absence of family labels, the analyst needs to rely on unsupervised
methods to identify similarities between unseen samples while, in certain cases,
it might be possible for the analyst to invest resources into initially labeling
some data. In this section we begin thus by exploring how a clustering algorithm
performs on our explicit graph representations when no labeled data is available.
If enough labeled data exists, however, the analyst can improve the clustering
performance through a semi-supervised approach by representing the data
through a low-dimensional implicit embedding as described in Section 3.4.

In particular, we proceed first to obtain a 2-dimensional visualization of our
data in both cases, which helps understanding how each embedding strategy
shapes the training and testing sets. To this end, we make use of the t-
Distributed Stochastic Neighbor Embedding (t-SNE) [96] algorithm, a technique

58 Analysis

for dimensionality reduction that is particularly well suited for the visualization
of high-dimensional datasets.

Figure 3.7 shows the t-SNE manifold for each embedding in 2 dimensions. It
can be observed how while the NH embedding already allows for part of certain
classes to be separable, the S2VSN embedding manifold allows for complete
classes to be clearly separable.

NH Embedded Manifold (t-SNE) S2VSN Embedded Manifold (t-SNE)

1
2
3
4
5
6
7
8
9

Fig. 3.7 t-SNE representation of training and testing NH and S2VSN em-
bedded manifolds

Next, we proceed to evaluate the performance of the KMeans clustering
algorithm on a set composed by our training and test partitions. Our al-
gorithm selection its motivated by the fact that KMeans can both efficiently
operate on a large number of samples and does not require input parameters
other than the cluster size. Therefore, to measure the clustering performance
on both embeddings, we make use of the performance metrics provided by the
clustering performance evaluation module in the Scikit-Learn [112] machine
learning toolbox. In particular, we proceed to evaluate KMeans on our embed-
ded datasets and compute the following performance metrics (see [112, 129])
for different values of K:

• Homogeneity: The Homogeneity metric is bounded between 0 and 1,
and indicates that the clusters of a clustering result only contain data
points which are members of a single class.

• Completeness: A clustering result satisfies completeness, which is also
ranged between 0 and 1, if all the data points that are members of a
given class are assigned to the same cluster.

3.5 Evaluation 59

• V-measure: The V-measure is the harmonic mean between homogeneity
and completeness and its score ranges between 0 and 1, where 1 indicates
a perfectly complete labeling.

• Adjusted Rand Index: The ARI computes a similarity measure be-
tween two clusterings by considering all pairs of samples and counting
pairs that are assigned in the same or different clusters in the predicted
and true clusterings. This metric takes values between -1 and 1, where
random labelings have an ARI close to 0 and 1 indicates a labeling without
errors.

• Adjusted Mutual Info: An AMI of 1 indicates that two clustering
result are perfectly matched. When the labelings are independent, as is
the case of random partitions, the expected AMI is around 0 on average
and can therefore be negative.

• Silhouette Coefficient: This metric is defined for each sample and
allows to evaluate a cluster without any ground truth. It indicates how
well defined the clusters are and takes values between -1 and 1, where
values near 0 indicate that clusters are overlapping and where negative
values generally indicate that a sample has been assigned to the wrong
cluster.

Figure 3.8 illustrates how the KMeans algorithm performs at clustering
both embedded datasets given the cluster size K as parameter. It can be
observed how the S2VSN embedded set can be clustered in general with a
better performance when the number of clusters is fixed to K = 13. Note
that from all the performance metrics computed, the silhouette coefficient is
calculated as an average of the silhouette coefficient of each sample and without
the need to rely on ground truth. Therefore, in order to estimate the number
of clusters present in an unlabeled malware dataset, the analyst can begin
by computing the silhouette coefficient for different values of K and selecting
that value that achieves the best results. In this setup, while the maximum
silhouette coefficient for the NH embedding would not result in similar good
values for the rest of the metrics, the maximum of the silhouette coefficient for
the S2VSN embedding is reached with K = 12, matching the results observed
with the other metrics and close to the real number of 9 clusters in the dataset.
Noticeably, both embeddings allow for the coefficient to remain positive on the
range of number of clusters evaluated.

60 Analysis

0 20 40 60 80 100
Clusters (K)

0.0

0.2

0.4

0.6

0.8

K = 66.0

K = 13.0

Homogeneity - NH
Completeness - NH
V-Measure - NH

Homogeneity - S2VSN
Completeness - S2VSN
V-Measure - S2VSN

0 20 40 60 80 100
Clusters (K)

0.0

0.1

0.2

0.3

0.4

K = 60.0

K = 13.0

Adjusted Rand Index - NH
Adjusted Rand Index - S2VSN

0 20 40 60 80 100
Clusters (K)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

K = 37.0

K = 13.0

Adjusted Mutual Info - NH
Adjusted Mutual Info - S2VSN

0 20 40 60 80 100
Clusters (K)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
K = 2.0

K = 12.0

Silhouette - NH
Silhouette - S2VSN

Fig. 3.8 Clustering metrics obtained with KMeans as a function of the cluster
size K.

In the following, we evaluate how a series of learning algorithms perform in
a supervised setup, both in a multiclass classification problem and an anomaly
detection setup, where each individual class is considered as an outlier respect
to the rest of the classes.

3.5.5 Multiclass Classification

In the most common scenario, the analyst observes a new sample and tries to
find the closest known family in a supervised fashion. We evaluate thus four
machine learning classifiers which can operate efficiently on large scale data in
a multiclass classification setting.

To this end, we train and compare the algorithms logistic regression (LR),
linear support vector machines (LSVM), random forest (RF) and gradient
boosted trees (XGB).

3.5 Evaluation 61

We find parameter values for all classifiers through cross-validation on the
training set and compute the performance metrics for classification on the
test set. Figure 3.9 illustrates the accuracy and the F1-score achieved by the
different classifiers on the different embeddings and Table 3.2 shows in detail
the average metric values and their standard deviation.

The accuracy indicates the total percentage of samples that are classified
correctly during testing and the F1-score is defined as the harmonic mean of
precision and recall. As our dataset present certain imbalance between classes,
we compute the F1-score with both micro and macro averages. In the first case,
the score is obtained by counting the total true positives, false negatives and
false positives. In the second case, the score is first calculated for each class
without taking into account the label imbalance and the unweighted mean of
all classes is reported as final score.

LR LSVM RF XGB
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

NH S2VSN

LR LSVM RF XGB
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

F1
 (m

icr
o)

NH S2VSN

LR LSVM RF XGB
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

F1
 (m

ac
ro

)

NH S2VSN

Fig. 3.9 Multiclass performance metrics for a classification algorithms in a
multiclass classification setup.

Table 3.2 Average and standard deviation values of performance metrics for
classifiers in Figure 3.9

Algorithm Embedding Accuracy F1 (micro) F1 (macro)

LR NH 95% ± 1% 95% ± 1% 85% ± 1%
S2VSN 65% ± 16% 65% ± 16% 57% ± 14%

LSVM NH 95% ± 1% 95% ± 1% 86% ± 2%
S2VSN 92% ± 1% 92% ± 1% 83% ± 1%

RF NH 91% ± 1% 91% ± 1% 81% ± 2%
S2VSN 97% ± 1% 97% ± 1% 90% ± 3%

XGB NH 91% ± 1% 91% ± 1% 80% ± 1%
S2VSN 98% ± 0% 98% ± 0% 93% ± 2%

Both Figure 3.9 and Table 3.2 let us draw several conclusions. First and, as
demonstrated by Gascon et al. [56], the explicit graph representation based on

62 Analysis

the neighborhood hash kernel used to train different machine learning classifiers
let us obtain a high classification performance for call graphs according to the
accuracy and F1-score achieved for instance, by the logistic regression and
linear SVM algorithms.

Nonetheless, the S2VSN embedding can improve performance in certain
cases by allowing the algorithms to learn in a low-dimensional space. In particu-
lar, the performance of the random forest and gradient boosted trees algorithms
improves when trained on the S2VSN embedded dataset. Furthermore, this
representation allows for the XGB classifier to obtain the best performance
overall.

We also observe how the performance decreases when the F1-score is com-
puted using a macro average, indicating that the F1 score presents an uneven
distribution across classes. To better understand how each family is character-
ized by each classifier in every case, we visualize in Figure 3.10 the confusion
matrices for each algorithm and embedding.

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

Tr
ue

 F
am

ily

LR - NH

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

LR - S2VSN

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

LSVM - NH

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

LSVM - S2VSN

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9
Predicted Family

1
2
3
4
5
6
7
8
9

Tr
ue

 F
am

ily

RF - NH

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9
Predicted Family

1
2
3
4
5
6
7
8
9

RF - S2VSN

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9
Predicted Family

1
2
3
4
5
6
7
8
9

XGB - NH

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9
Predicted Family

1
2
3
4
5
6
7
8
9

XGB - S2VSN

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3.10 Confusion matrices for each classification algorithm and embedding.

Although the results are consistent with those obtained for all algorithms
and representations, as shown in Figure 3.9, certain significant patterns can
be observed. Specifically, we see that class 5 is particularly difficult to identify
regardless of the algorithm and representation used, resulting in a lower F1-
score when computed with a macro average. Such result is however, consistent
with the fact that class 5 contains the least number of labeled samples, as
enumerated in Table 3.1.

3.5 Evaluation 63

In the following, we explore how the different classifiers can be used to
identify samples of each class as a new family when such a family has not been
observed before.

3.5.6 Anomaly Detection

We have discussed in the previous section how a malware analyst can assign
a newly observed sample to a known family. However, it is not unusual for
the analyst to observe a sample that belongs to an entirely new campaign and
therefore a new family.

In such scenario, we would like the analyst to be able to identify the new
sample as an outlier and use this outlier as the base to define a new family.
To make this possible, we make use of the machine learning classifiers from
the previous section in a setup where the score assigned to the most probable
class is compared with a threshold that indicates if the decision made by the
classifier has high confidence or the sample can be classified as an outlier from
a new class.

Based again on the training and testing sets and the corresponding
embeddings, we train the classifiers by leaving the outlier class out during
learning and combining samples from all classes during testing. Figure 3.11
and Table 3.3 show the performance of the classifiers in this setup as a trade-off
between the outlier detection rate (ODR) and the inlier misdetection rate
(IMR). That is, a sample from a known family is considered to be an inlier and
a sample from an unknown family should be recognized as an outlier. Similar
to the results obtained in the previous sections, we observe that the S2VSN
embedding provides an advantage over the neighborhood hash embedding when
used to train the random forest and gradient boosted trees algorithms. Results
in Table 3.3 show, however, that if we limit the inlier misdetection rate to low
values, the random forest classifier achieves the best performance in general.

Table 3.3 Outlier detection rates for specific values of the inlier misdetection
rate in the trade-off curves depicted in Figure 3.11

Algorithm LR LSVM RF XGB

Embedding NH S2VSN NH S2VSN NH S2VSN NH S2VSN

IMR

0.01% 37% 7% 23% 11% 27% 65% 49% 61%

ODR0.1% 37% 7% 23% 12% 24% 65% 49% 61%
1% 47% 14% 34% 19% 41% 76% 63% 74%

10% 65% 37% 57% 37% 55% 89% 79% 89%

64 Analysis

0.0 0.2 0.4 0.6 0.8 1.0
Inlier Misdetection Rate

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 D

et
ec

tio
n

Ra
te

LR - NH
LSVM - NH
RF - NH
XGB - NH

LR - S2VSN
LSVM - S2VSN
RF - S2VSN
XGB - S2VSN

(a)

10 3 10 2 10 1 100

Inlier Misdetection Rate
0.0

0.2

0.4

0.6

0.8

1.0

Ou
tli

er
 D

et
ec

tio
n

Ra
te

LR - NH
LSVM - NH
RF - NH
XGB - NH

LR - S2VSN
LSVM - S2VSN
RF - S2VSN
XGB - S2VSN

(b)

Fig. 3.11 Anomaly detection performance as a trade-off between the outlier
detection rate and the inlier misdetection rate. Figure 3.11b shows the behavior
of the curves in Figure 3.11a in logarithmic scale.

Curves in Figure 3.11 show the aggregated performance achieved by the
classifiers for all classes. To understand in more detail how each one of the
families in our dataset can be identified as an outlier in comparison with the
rest of the families, we compute the same curves for each one of the families
and calculate the area under the curve (AUC) as the performance metric for
each class.

Figure 3.12 shows the AUC achieved by each classifier when trained on
the dataset embedded using both proposed approaches and allow us to derive
some conclusions. For instance, it can be observed that the average decrease in
performance for the logistic regression and the linear SVM when trained on the
S2VSN embedding is determined by large variations among classes. Moreover,
we can also conclude that these two algorithms benefit from operating in a
high-dimensional space, although not as much as the increase in performance
achieved by the random forest and gradient boosted trees algorithms when
trained in the low-dimensional space of the S2VSN embedding. Accordingly,
this combination of embedding and classifiers offers the best and most consistent
performance across all classes.

3.6 Limitations 65

1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

LR - NH
LSVM - NH
RF - NH
XGB - NH

1 2 3 4 5 6 7 8 9
Outlier Family

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

LR - S2VSN
LSVM - S2VSN
RF - S2VSN
XGB - S2VSN

Fig. 3.12 AUC achieved by the different classifiers and embeddings at identifying
each individual family as an outlier.

3.6 Limitations

The experiments from the previous section show how our structural representa-
tions can be used effectively for malware triage in different setups. However,
our approaches are not free of certain limitations.

For instance, by analyzing the global structure of binary applications,
our method is resilient towards typical local obfuscation techniques, such
as instruction reordering, branch inversion or the renaming of libraries and
identifiers. However, as a purely static method, it suffers from the inherent
limitations of static code analysis. In particular, the construction of static
call graphs is undecidable and thus the function call graphs processed by our
method are typically over-approximations. In principle, this works towards the
attacker’s advantage, as the call graph can be obfuscated by adding unreachable
calls. Moreover, function inlining can be used to hide the graph structure.
While in the extreme case, this allows for the creation of malware with only a
single function, this would both limit the functionality of the code and hint at
a suspicious binary.

Attackers may also target the disassemble process to evade detection by
our method. For example, invalid but unreachable bytecode sequences (“junk

66 Analysis

code”) can be deliberately inserted to hinder successful disassembling. More-
over, bytecode unpacked and loaded at runtime cannot be processed by the
disassembler and thus can only be considered if our method is coupled with
dynamic analysis techniques.

Finally, neural network architectures require a considerable amount of
labeled data to be trained. However, as described in Section 3.5.2, the number
of available samples can be combined to generate a much large number of pairs,
as required for the input to the siamese architecture to tune the structure2vec
network effectively.

3.7 Related Work

In the following, we discuss related work on structural code comparison in
general and then proceed to discuss approaches specifically designed for malware
classification with a focus on machine learning approaches that are specially
linked to our work.

The analysis of malicious code and its structure have been a vivid area of
security research in the last years. In particular, determining similar program
code is an important problem encountered in several areas of security research,
including the detection of malware [86, 136, 71, 3], software plagiarism [94,
106] and vulnerabilities [43, 156]. To this end, several methods to assess
the structural similarity of code have been proposed. For example, Kruegel
et al. [86] as well as Cesare and Xiang [21] present methods for polymorphic
malware detection based on the comparison of control flow graphs. In particular,
Kruegel et al. perform graph labeling to preserve instruction level information
in a similar manner as performed by our graph representation. Unfortunately,
both approaches are based on sets of control flow graphs and thus ignore the
composition of functions entirely. We address this shortcoming by taking into
account the function call graph.

Other researchers have also recognized function call graphs as a robust
representation for code comparison. For example, Hu et al. [71] as well as
Shang et al. [136] define similarity metrics for function call graphs, however,
without considering the use of supervised learning techniques for automatic
malware triage. The problem of clustering known malware into families has
been considered by Kinable and Kostakis [80], who use approximations to
graph edit-distances to cluster malware by call graph similarity. Efficiency is
however, not a primary concern in this setting, whereas it is vital in malware

3.7 Related Work 67

detection, a problem we address using an efficient linear time mapping in our
explicit embedding and through a low-dimensional representation in our learned
embedding.

Kernel functions for structured data have been pioneered by Haussler [67]
and have been first applied over graphs by Kondor et al. [83]. Graph kernels
have since then been applied mainly in bioinformatics [e.g., 12, 137] and
chemical informatics [e.g., 116, 69]. Unfortunately, the high computational
effort involved has prohibited many applications in the past. Researchers have
therefore focused on developing efficient approximations of graph kernels. An
overview of these approaches is given in [13].

Regardless of these efforts, graph kernels have found limited attention in
malware detection to date. An exception is the work by Wagner et al. [150] and
Anderson et al. [3] who use graph kernels to analyze execution traces obtained
from dynamic analysis.

More recently and motivated by the extensive advances in the field of
artificial neural networks, researchers have developed techniques that allow
learning graph models by means of deep neural architectures and attempt to
overcome the limitations of graph kernels. In this chapter, we build on the ideas
of Dai et al. [37] to obtain vector representations from graphs through neural
networks, allowing for learning directly on the graph space. Such an strategy
is also used for instance in the security research context by Xu et al. [155], who
aim at detecting whether two binary functions coming from different platforms
are similar or not. In a similar vein, Narayanan et al. [110] propose subgraph2vec,
an approach to obtain a vector representation from graphs through a neural
architecture in an unsupervised fashion.

A second strain of research focuses on malware classification and we discuss
here some works that share a similar scope or introduce tangential ideas to
our approaches. In particular and due to the popularity of mobile devices in
general, and of the Android operative system in particular, much of the recent
research on detecting variants of known malware families has revolved around
this platform. For example, Zhou et al. [161] as well as Hanna et al. [65] employ
feature hashing on byte code sequences to measure code similarity. Furthermore,
Crussel et al. [35] present a method called DNADroid, which compares program
dependence graphs. Finally, RiskRanker by Grace et al. [58] compares function
call graphs. Unfortunately, RiskRanker requires source and sink functions
commonly linked to malicious behavior to be specified manually, thus requiring
constant manual adaption to changing trends in malware development. In

68 Analysis

contrast, the classifiers learned by our methods can be easily adapted by
re-training on more recent malware data sets.

More recently, Rajasegaran et al. [115] introduce a method for detecting
counterfeit mobile applications that employs a similar approach to ours. In
their work, they make use of a siamese network and two convolutional neural
networks to learn embeddings from images. In this case, they use the pretrained
network VGGNet on images from icons of apps. The n − 1 layer is used as
an embedding for the image and then a distance metric is used to find similar
looking icons. Other methods targeting the Android platform do rely, like ours,
on graph learning. For example, Fan et al. [45] propose to construct static call
graphs of sensitive API for Android malware classification. In their work, they
characterize each family as a set of sensitive API subgraphs and measure the
distance to each new sample as a function of the similarity between subgraphs.
Computing this similarity is however expensive as it requires to build a matrix
for each subgraph and calculating the normalized weighted sum of the cosine
distances among nodes in the intersection of two subgraphs. In contrast, our
function call graph representation and embeddings do not require the analyst
to specify sensitive behaviors beforehand and allow to measure the similarity
efficiently in the output vector space.

Closer in scope to our work, Vanderbruggen et al. [146, 145] focus on
the classification of malicious x86 binaries through graph analysis. However,
they rely on manually extracting features from each binary and the spectral
properties of the interprocedural graph. This allows them to obtain a fixed size
static representation of the binaries in different malware families. In contrast,
both of the approaches that we propose can operate directly in the graph space.

Chen et al. [25] work instead with graphs resulting from the dynamic
analysis of Windows executables. In particular, they build markov models over
APIs to characterize data flow behavior of different software types including
ramsomware. In contrast to our approach their method takes n-grams over
API sequences and do feature selection through correlation and gain ratio to
build the corresponding embeddings.

Also with a dynamic approach, Rosenberg et al. [131] address the problem
of malware classification as a means to perform attribution of targeted attacks
on an interesting APT dataset. However, in contrast with the sophistication
of their malware data, they propose an approach based on building a bag-
of-words model from the 50.000 most common words of Cuckoo sandbox
reports. The resulting vectors are then used to train a feedforward neural

3.8 Summary 69

network. While the authors argue that dynamic analysis can reveal high level
behaviors and results effective in a setup with a limited number of families,
it is however very expensive to deploy at scale and hard to defend from
evasive behaviors. Our approach addresses thus this problem through a robust
static representation in combination with two complementary embeddings. An
explicit embedding that allows for explainability while being efficient and a
low-dimensional implicit embedding that leverages discriminative information
to improve the performance of the classifier without sacrificing efficiency.

3.8 Summary

After the detection phase, the security analyst characterizes the threat in order
to understand its implications and find possible ways to mitigate future attacks.
Therefore, in this chapter, we have explored the role of malware as a source of
intelligence and proposed strategies to establish a link between new samples
found during the investigation of an attack and known malicious code.

In particular, we focus on the problem of assisting the analyst performing
malware triage at scale as a means to understand the behavior of malicious
samples and being able to attribute the attack to a known threat actor or,
given the case, to an unknown attacker.

To this end, we propose to characterize malware through a structural
representation based on function call graphs. This representation is robust
against low level modifications and its expressiveness allows us to model the
behavior of the binary code without loss of generality. Furthermore, and given
the actual massive scale of the malware problem, we leverage modern machine
learning algorithms that are able to deal efficiently with large amounts of data.

Based on our structural representation, we propose two complementary
approaches to generate embeddings of function call graphs that let machine
learning algorithms operate on numerical vector data. First, an explicit and
high-dimensional embedding inspired by graph kernels that, thanks to its ex-
plainability, offers the analyst the possibility of understanding straightforwardly
the decisions of a linear machine learning classifier. Second, an implicit low-
dimensional embedding that is learnt from the data through artificial neural
networks and that is based on the neural embedding approach structure2vec
and optimized through a siamese architecture.

We address then the problem of malware triage from different perspectives
and evaluate the performance of a series of machine learning algorithms when

70 Analysis

trained on both types of embeddings in different setups. For instance, we first
evaluate the quality of the clusters found by a clustering algorithm on our explicit
graph representations when no labeled data is available. Then, we show how
the analyst can improve these results through a semi-supervised approach by
representing the data through a low-dimensional implicit embedding. Moreover,
we evaluate a set of classifiers in a supervised setup in order to assign new
unseen malware samples to known families and show how the explicit graph
representation allows us to classify malware with 91% accuracy, a value that
can be further improved up to 98% by compromising on explainability through
the implicit embedding. Finally, we propose an approach based on anomaly
detection that enables the analyst to identify if a new sample belongs to a new
family and evaluate its performance in every case by considering each family
as an outlier.

The analyst is thus well equipped with the strategies proposed so far to put
into place detection and analysis methods to block and characterize targeted
attacks. However, given the current threat landscape, isolated efforts to thwart
attack campaigns within companies and organizations are rendered mostly
ineffective against actors with large dedicated resources. Therefore, in the next
chapter, we propose a series of methods for collecting, sharing and correlating
threat data and explore how the insights and threat intelligence generated by
analysts can be effectively shared and consumed by the security community.

04

Response

As we have discussed in the previous two chapters, the detection and analysis
of attack campaigns is a daunting task: First, due to the focused operation
of the campaigns, only few traces of the attackers are available for forensic
investigation. Second, the employed malware often makes use of novel exploits
and infiltration techniques. As a consequence, conventional security defenses
such as intrusion detection systems and anti-virus scanners fail frequently
to spot these type of threats, especially because detection patterns become
available only with significant delay, if at all. It has become evident then, that
isolated efforts to detect attack campaigns within companies and organizations
are mostly ineffective against organized threat actors.

As a remedy, security research has started to explore means for collecting,
sharing and analyzing threat information across organizations—evidence-based
knowledge referred to as threat intelligence [e.g., 79, 50, 16, 111]. As part
of this process, different exchange formats have been proposed to provide a
standardized way for describing security incidents, forensic traces and obser-
vations related to attack campaigns. Examples of these formats are STIX [7],
IODEF [39] and OpenIOC [98], which are gradually adopted by national and
enterprise CERTs in combination with commercial and open source databases
for storing knowledge about ongoing attacks such as Alien Vault’s Open Threat
Exchange [147] or the Collective Intelligence Framework [28].

72 Response

However, collecting and sharing information alone is not sufficient for
mitigating the threat of attack campaigns. Although such threat intelligence
platforms enable searching for indicators of compromise that exactly match a
query, the actual crux is to correlate the vast amount of available data and
pinpoint similar characteristics of novel campaigns that can help eliminating
existing infections as well as craft detection patterns more efficiently.

After introducing our approaches for detection of targeted emails in Chap-
ter 2 and for triage of malware in Chapter 3, we present in this chapter Mantis,
a threat intelligence platform that enables the analyst to aggregate and correlate
any threat data generated in the detection and analysis phases.

In particular, built on top of a unified representation that is based on
attributed graphs, the platform is able to merge information from different
exchange formats, solving the problem of analysing data contained in heteroge-
neous or overlapping standards. Furthermore, different threat objects that are
typically analysed independently are correlated through a data type-agnostic
representation. Such an approach allows unveiling high-level relations not
visible within individual threat reports and linking unconventional patterns
shared between seemingly unrelated attack campaigns.

At the core of our platform lies a novel graph-based similarity algorithm
that allows discovering similarities between threat data objects at different
levels of granularity. This analysis allows a security analyst to search the
attributed graphs for threats related to individual observations—similar in
spirit to a search engine. For example, given an object from a security incident,
such as a suspicious file or an HTTP request, the platform can identify related
nodes in the graphs and traverse them to the corresponding threat reports,
ultimately returning information about the underlying attack campaign. In
addition, Mantis supports authoring reports for new incidents that can be
used for searching and correlating existing information, as well as extending
existing threat data with new insights.

We evaluate the utility of Mantis as an information retrieval system for
threat intelligence in a quantitative and qualitative fashion. To this end, we
make use of a large data set of malware observed in the wild and collected
by a security vendor at the end-point systems of different companies and
organizations. We base our evaluation on the threat reports created during the
analysis of such samples.

As a result, we show how given an object from a security incident, our
platform is able to retrieve associated data to the corresponding malware with

73

a mean average precision of 80% in a set of 14,000 standardized threat objects.
This means that 4 out of 5 results returned to the security analyst are relevant
to her query. We further illustrate the performance of this analysis in two case
studies based on threat intelligence from highly targeted attack campaigns:
Stuxnet, the well-known joint endeavour of several west nations to sabotage
Iran's nuclear program and Regin, a sophisticated espionage tool allegedly
sponsored by a state-nation and distributed worldwide to selected individuals
and organizations.

Therefore, while its analysis and query capabilities alone already provide a
valuable tool for assessing the impact of security incidents, Mantis comple-
ments the approaches introduced in Chapters 2 and 3, enabling a network-wide
forensic examination for artifacts that have been detected and analysed.

To the best of our knowledge, Mantis, available as an open-source project,
is the first practical solution for performing similarity-based analysis of multi-
format and structured data for threat intelligence. In summary, we make the
following contributions in this chapter:

• Unified representation of threat intelligence reports. We present
an open-source platform for threat intelligence that merges different
standard exchange formats and provides a unified representation of threat
reports as attributed graphs.

• Similarity analysis of threats. We introduce a similarity algorithm
for attributed graphs that enables uncovering relations between threats
at different levels of granularity.

• Information retrieval for threat intelligence. By incorporating the
similarity analysis into our platform, we devise an information retrieval
system that is capable of retrieving related reports given individual
observations from security incidents.

The rest of this chapter is organized as follows: we discuss the concept
of threat intelligence and its standards in Section 4.1. Then, we proceed to
introduce our system for analysis and retrieval of threat data in Section 4.2,
evaluate its effectiveness with real-world threat data in Section 4.4 and discuss
its limitations in Section 4.5. Related work is discussed in Section 4.6 concluding
the chapter.

74 Response

4.1 Threat Intelligence

Companies and organizations dealing with sensitive data usually employ differ-
ent security measures for protecting their infrastructure, including systemati-
cally monitoring network and host events. While this monitored data can be
searched for security incidents on a regular basis, appropriate detection and
search patterns are only available for known threats, leaving infrastructure vul-
nerable to novel and unknown attack campaigns. This situation, however, can
be significantly changed if information about incidents is collected, shared and
analyzed across organizations. Although this approach may not be sufficient
for spotting extremely focused attacks, it enables hunting down threat actors
that re-use or gradually evolve their techniques and strategies.

However, information regarding security incidents, related observations, and
threat actors is very heterogeneous and difficult to transmit without a lack of
context. In order to overcome this problem, different standard formats have
been recently proposed to provide a structured representation of threat data
that can be easily shared and processed. These standardised but diverse threat
insights constitutes what has been known as threat intelligence. Examples of
these standards are IODEF, developed by members of the IETF [39], OpenIOC,
implemented by Mandiant in many of its products [98], and STIX with its
associated family of formats, like CyBOX or MAEC [7]. In particular, the
STIX standard is currently leading the adoption by national and enterprise
CERTs. In the following, we briefly cover its design as an illustrative example
of the structured representations implemented by all of the mentioned threat
intelligence standards.

The STIX standard comprises a family of XML schemes whose development
is driven by the security community under supervision of the MITRE Corpora-
tion. The individual STIX formats and constructs allow to describe numerous
types of threat information in a structured way and for different use cases.
For example, observations related to threats can be described as Observables,
ranging from registry keys and file names to network addresses and strings
in URLs. These Observables can be combined with logical operators to form
Indicators that reflect and describe concrete threats. Other constructs include
representations for Incidents, Courses of Action, Attack Campaigns and Threat
Actors. A detailed description of the different constructs is provided in the
STIX specification [7].

4.1 Threat Intelligence 75

1 <stix:STIX_Package (...) id="package -37e">
2 <stix:STIX_Header >
3 <stix:Title >APT1</stix:Title >
4 <stix:Description >
5 This package contains the IOCs referenced
6 in Appendix G of the APT1 report.
7 </stix:Description >
8 </stix:STIX_Header >
9 <stix:Observables >

10 <cybox:Observable id="Observable -9ba">
11 <cybox:Object id="URI -9ba">
12 <cybox:Properties type="URL">
13 <URIObj:Value condition="contains">
14 /mci.jpg
15 </URIObj:Value>
16 </cybox:Properties >
17 </cybox:Object >
18 </cybox:Observable >
19 <cybox:Observable id="Observable -2b2">
20 <cybox:Object id="File -2b2">
21 <cybox:Properties type="File">
22 <FileObj:Name>gdocs.exe</FileObj:Name>
23 <FileObj:Extension >exe</FileObj:Extension >
24 <FileObj:Size>261822 </FileObj:Size>
25 <FileObj:Attributed_List >
26 <cybox:Object condition="contains">
27 v1.0 No Doubt to Hack You , Writed
28 by UglyGorilla , 06/29/2007
29 </cybox:Object >
30 </FileObj:Attributed_List >
31 </cybox:Properties >
32 </cybox:Object >
33 </cybox:Observable >
34 </stix:Observables >

Fig. 4.1 Exemplary STIX package for the “APT1” report by Mandiant [97]. Note
that several identifiers and XML elements have been simplified for presentation.

As an example, let us consider the STIX package shown in Figure 4.1
which covers a tiny and simplified fragment of the indicators for the “APT1”
campaign. This campaign was uncovered in February 2013 and comprised
a series of targeted attacks against several companies and organizations [97].
Some common constructs of the STIX standard can be seen in the example: An

76 Response

Observable matching the content of an URI (line 10–18), another Observable
corresponding to a particular file (line 19–33), and an Indicator combining the
two (line 36–61) that describes the malware family and references the underlying
attack campaign. Note that although not included here, the original report in
OpenIOC format covers over 3,000 Observables and 40 different Indicators for
the attack campaign.

The use of threat intelligence standards allows to share and process a
large amount of complex and enriched threat data in a standard and machine
readable format. This has encouraged some companies with a large distributed
infrastructure and a global view of the threat landscape to aggregate feeds
that are made available to smaller organizations. However, the information
received through these sources is highly heterogeneous and still needs to be put
into context by the analyst. In our work, we aim at making this process much
more efficient by providing a platform that integrates different standards into a
unified representation and allows for exploring and searching structured threat
data for relevant information.

4.2 The MANTIS Platform

As a last step for characterizing and understanding attack campaigns, we
present Mantis, a threat intelligence platform developed in collaboration with
Siemens for storing, authoring and managing threat data. Its basic framework,
implemented by Siemens CERT, offers support for several common threat
intelligence standards, including STIX and OpenIOC, two of the standards
with the largest adoption in the security community. As part of this thesis, we
create a unified data model for Mantis and design algorithms that extend its
functionality, transforming the platorm into an information retrieval system
for threat intelligence. To support its adoption and encourage further research,
Mantis is available as an open-source project1 and readily applicable for exper-
imenting with threat data at organizations and CERTs and the implementation
of new importers for additional standards.

To provide a flexible and architecture-independent design, Mantis is struc-
tured as a set of Django applications. Figure 4.2 shows a schematic view of
its components. In the typical use case, the security analyst documents the
findings of an investigation using the authoring interface, while at the same
time accesses related information about already documented threats through

1Mantis— https://github.com/siemens/django-mantis

https://github.com/siemens/django-mantis

4.2 The MANTIS Platform 77

CyBOX

STIX

...

IODEFSimilarity
Analysis
Similarity
analysis

Report
Authoring

Searching &
Retrieval

Data
Import

Unified
Representation

Authoring of
reports

Searching &
retrieval

Import of
threat data

Unified
representation

Security
analyst

CyBOX

STIX Threat
Intelligence

Feeds

Mantis

Attributed graph

...

IODEF

Fig. 4.2 Schematic overview of the Mantis architecture.

the retrieval interface. Both interfaces provide different views for managing the
creation and the collaborative maintenance of threat reports. Additionally, the
platform supports receiving data feeds in different formats from other tools, or-
ganizations and security companies. The data contained in these feeds is jointly
stored with authored reports and thereby enables an analyst to document her
findings in the context of already known threats and attack campaigns.

We leave a more detailed description of the analyst workflow for Section 4.4.2
where, based on real data from a known attack campaign, we illustrate how
the analyst can interact with the platform during an investigation.

4.2.1 Unified Data Model

To provide a joint view on the threat data collected, Mantis expresses the
different XML standards as directed graphs and links together constructs
describing the same type of information.

Table 4.1 Example of flattened facts for an Observable.

Id Fact term (key) Fact value

f1 Properties/File_Name gdocs.exe
f2 Properties/File_Extension exe
f3 Properties/Size_In_Bytes 261822
f4 Properties/File_Attributed_List/Object@cond... Contains
f5 Properties/File_Attributed_List/Object v1.0 No Doub...

As a result, related data describing campaigns at different levels, such as
generic attack strategies and concrete malicious payloads, are merged into a
single view and can be accessed by simply traversing the edges of the graphs.

Formally, we define this directed graph as a tuple G = (V,E, L), where each
node v ∈ V symbolizes a standard construct from an original XML document.
Two nodes v, u ∈ V are connected by a directed edge (v, u) ∈ E, if the construct
corresponding to u is either contained or referenced by the construct represented

78 Response

File: foo.exe Title: MANITSME

Description: ...

Composition: OR

URI: evil.com

Extension: exe

Title: APT1

Description: ...

File: gdocs.exe

Report

Indicator

Campaign

Title: MANITSME

Description: ...

Composition: OR

Observable
URI: /mci.jpg

Observable

Extension: exe

Observable

...

Title: APT1

Description: ...

Fig. 4.3 Attributed graph for STIX package in Figure 4.1.

by v. Moreover, we attach a list of facts l ∈ L to each node. This enables us to
store unstructured data in the graph, assigning a set of attributes to each node.
Each list l ∈ L has the form l = (f1, f2, . . . , fn) where a fact fi results from
flattening the inner structure of a standard construct into facts of key-value
pairs.

As an example of this unified representation, Figure 4.3 depicts the at-
tributed graph that abstracts the relations between objects and data in the
STIX report from Figure 4.1, including the two Observables, their composition
and the corresponding Indicator. Note how several substructures have been
flattened into facts, such as the title of the report or the URI pattern.

In addition Table 4.1 shows the complete list of flattened facts for the
Observable at the center of Figure 4.3. Note that the flattening is conducted
recursively and the fact terms are built using a hierarchical structure. This
generic representation within the nodes of the graph will let us compare
effectively different threat reports and traverse between objects even if their are
of different type, such as from an observed URI pattern to the corresponding
attack campaign.

Each fact value in the platform is stored exactly once and referenced from
any object containing the fact. This de-duplication saves storage space and,
more importantly, enables an efficient calculation of correlation based on fact

4.3 Threat Similarity Analysis 79

equality. Thus, the analyst can retrieve all nodes related to particular facts
with a single query, for example to get a listing of all executable files with a
size of 261,822 bytes. However, while equality-based searches already provide
a powerful instrument for mining the collected threat data, it is obvious that
more complex relations cannot be uncovered by focusing on exact fact matching
alone. In the following, we introduce our analysis method which, as part of
Mantis, allows the analyst to perform similarity-based queries on top of its
unified graph data model.

4.3 Threat Similarity Analysis

When working with threat intelligence, a security analyst investigating an
incident begins by documenting any suspicious findings or the results of a more
detailed analysis. Then, the analyst wonders if such an event has been observed
in the past and specially, if relevant documentation about the incident already
exists.

However, obtaining an answer to this question is far from trivial. Threat
reports can be large and heterogeneous and contain data that, without being
identical, are linked to related events. For example, consider the case of several
Observables containing HTTP requests of similar URLs. While being slightly
different in the URI or host name, such objects may be associated to the
same threat actor and thus should be retrievable to help investigating the new
incident.

As a consequence, the analyst requires a method that can identify and
retrieve similar objects regardless of their structure, size or content given
a query object. Therefore, we strive for a similarity-based search that is
capable of identifying similar facts, nodes and subgraphs on top of the unified
representation of Mantis. In particular, we implement our approach in two
steps: First, we draw on our unified representation and devise a method
that enables non-exact matching based on fingerprints computed using the
simhash algorithm. (Section 4.3.1). Second, we implement a retrieval system
to efficiently identify all fingerprints similar to a given query (Section 4.3.2).

4.3.1 Simhash Fingerprinting

To measure the similarity between arbitrary objects in our representation, we
make use of the bag-of-words concept from the information retrieval field [133].
In its original form, this model is intended for text documents in order to

80 Response

obtain a numerical vector representation based on the words or phrases they
contain. However, threat data is heterogeneous and may range from simple file
names to code fragments and textual descriptions. Therefore, we employ byte
n-grams to characterize the content of an object [152, 38]. This means that a
fact f is represented by all byte strings of length n contained in the fact value.
Similarly, a node v is characterized by all n-grams contained in its associated
facts l and a subgraph rooted at a node u is represented by the n-grams of all
nodes reachable from u.

While the extracted n-grams provide a versatile and generic representation
of the underlying content, they are not suitable for an efficient analysis, as
they require variable-size storage and cannot be compared in constant time.
For example, if new data introduced into the platform contained previously
unseen n-grams, the existing vector representation of the bag-of-n-grams model
should be recomputed for all objects to accommodate the new n-grams. As
a remedy, we employ the simhash algorithm introduced by Charikar [23], an
approximation technique that maps an arbitrary set of objects to a fixed-bit
fingerprint.

The simhash algorithm ensures that although each object is represented by a
hash of its n-grams, similar objects have similar fingerprints. More specifically,
the design of the algorithm guarantees that the Hamming distance [63] of
fingerprints computed from similar objects is small. This property allows us to
articulate the problem of finding a similar construct in Mantis given an input
query and its fingerprint F as the problem of finding those fingerprints that
differ from F in at most b bits.

The algorithm proceeds as follows: First, each object is hashed to an m-bit
value. Second, the bits at each position i in the hash values are counted, where
a 1-bit is interpreted as +1 and 0-bit as -1. Finally, the resulting m count
values are converted into an m-bit fingerprint by setting all positive counts to 1
and all negative counts to 0. In our setting we apply the simhash algorithm to
compute m-bit fingerprints for the sets of n-grams associated with facts, nodes
and subgraphs, where we set n = 3 and m = 64. Accordingly, the fingerprint
Ff of a fact f is computed by

Ff = simhash(N(f)) (4.1)

where N is the set of n-grams contained in the fact value. Similarly, we compute
the fingerprint Fv of a node v as

4.3 Threat Similarity Analysis 81

Fv = simhash
(⋃

f∈l(v)

N(f)
)

(4.2)

where l(v) is the list of facts associated with v, and arrive at the fingerprint Fg

of a subgraph rooted at a node u by

Fg = simhash
(⋃

v∈r(u)

⋃

f∈l(v)

N(f)
)

(4.3)

where the auxiliary function r(u) returns all nodes reachable from u. Figure 4.4
shows a complete example of this computation for a fact containing the value
/mci.jpg.

/mc
mci
ci.

i.j
.jp
jpg

Counting
of hash bits

11101
11111
10011 11100

10101
01000

Fingerprint
/mci.jpg

Fact

Extraction of
n-grams

Hashing
of n-grams

Construction of
Simhash

11101

+4 +2 +2 -2 +2

Fig. 4.4 Computation of the simhash fingerprint of a fact.

The value is first represented by a set of 3-grams and then mapped to a set
of 5-bit hash values. These values are finally aggregated to form the fingerprint
Ff = 11101.

Note that n-grams are agnostic to the type of each fact, what results in
determining similarity at a lexical level. This means that, in the same way as
a search engine works, our method is not limited to measuring the similarity
between constructs of the same type (e.g. two IP addresses), but between
all possible types. This comparison enables to find relations in cases where
standards are incorrectly filled or the types of data are unknown. For instance,
a construct including a fact that describes the name of a file can be matched
to a report including a description where this file is mentioned.

82 Response

4.3.2 Hamming Distance-based Queries

When a large number of threat reports is loaded into the system the number
of constructs that needs to be analyzed can rapidly increase. For this reason,
computing the Hamming distance between the query fingerprint and all queries
in the platform can be computationally expensive.

As a remedy and to avoid precomputing the distance between all existing
fingerprints at a maximum of b bits we follow the strategy proposed by Manku
et al. [100]. In their approach, an index contains a series of buckets where each
bucket has associated an integer p and a permutation of bits π. Each bucket
is filled by first applying its permutation to all existing fingerprints and then
sorting the resulting set of permuted fingerprints. Given a query fingerprint F
and an integer b, we identify all permuted fingerprints in each bucket whose
top p bits match the top p bits of π(F). From these fingerprints, the ones that
differ at most k bits from π(F) are retrieved as result. Such approach can be
completed in O(p) and does not required the computation of a large distance
matrix of fingerprints. For discussion on the optimal number of buckets and
other implementation details, we refer the reader to the original description of
the indexing approach introduced by Manku et al. [100].

For our particular application, we build three indexes: one for the fin-
gerprints of individual facts, a second one for the fingerprints of nodes (i.e.
individual constructs with their own semantics in the threat intelligence stan-
dard) and a third one for the fingerprints of subgraphs rooted at the different
nodes. When a new report is imported into the system we first represent its
data as an attributed graph. Then, we compute the fingerprints of its facts
and constructs and add them to the corresponding index. When the analyst
queries the system, the fingerprint of the query is computed and depending
of its type, the results obtained from the corresponding index are retrieved.
Moreover, retrieval results are sorted according to their Hamming distance and
therefore their predicted relevance. This means that even in the case that a
query returns a large list of results, the analyst can rapidly identify the most
relevant entries and keep conducting a focused investigation. In the following,
we proceed to illustrate in more detail the interaction of the analyst with the
platform and to evaluate the efficacy of our approach using real-world threat
data.

4.4 Evaluation 83

Table 4.2 Raw dataset indexed by Mantis.

Standard Construct Size

STIX STIX Package 2,621
STIX Observable 7,282
STIX Indicator 2,764
CybOX Observable 255,941
CybOX DNSQueryObject 2,583
CybOX FileObject 12,334
CybOX ProcessObject 17,914
CybOX SemaphoreObject 244
CybOX WinMutexObject 18,513
CybOX WinRegistryObject 186,990
CybOX WinThreadObject 22,347

4.4 Evaluation

In this section we illustrate through a use case how the analyst may interact
with the Mantis platform and then extend this example to a full quantitative
and qualitative evaluation of our method for similarity-based searches. In
particular, we first explore the performance of the system responses when every
object and fact value is used as the input query introduced by the analyst.
Second, we evaluate the results provided by the system in two specific scenarios.
These involve threat data from the targeted and, therefore, more elusive Stuxnet
and Regin attack campaigns.

4.4.1 Data Set

We consider for our evaluation a dataset of STIX packages automatically
generated from malware samples collected in the wild by a security vendor in
June 2015 at the end-point systems of different companies and organizations.
The samples cover a wide range of malicious activity, including common botnets,
backdoors and attack campaigns. Each sample is analyzed in a sandbox
environment, where the results of the underlying static and dynamic analysis
are automatically converted to CyBOX objects and grouped in STIX packages.

Based on results provided by VirusTotal [149], we assign a label to each
STIX package according to the hash of the analysed binary. As the names
assigned to different malware families by AV vendors vary, we use a majority
voting strategy and select those reports with a consensus of more than 5 vendors.
The resulting 2,621 STIX reports are then loaded into Mantis for testing.
Table 4.2 contains a summary of the constructs present in the original data.

84 Response

Moreover, we take into considerations certain characteristics of the data
that are relevant for the evaluation: First, we exclude all objects and facts
that are unsuitable for a similarity search, such as local timestamps, identifiers
and hash sums, reducing the size of the attributed graphs to 14,987 individual
nodes. Note that although these types of objects are not included to evaluate
the algorithm, they are still in the system and are thus, searchable. Second,
if several objects in one or several STIX reports contain the same value, the
importer stores this value only once in Mantis. As a result, nodes in the
unified representation contain only references to their values, saving storage
space if a certain value occurs more than once. The de-duplication performed
by our platform, results in a total of 46,015 unique facts being stored in the
system for similarity analysis.

4.4.2 Analyst Workflow

In order to illustrate how the security analyst may interact with the platform
and given the dataset present in the system, we load an additional set of 3
STIX reports containing several Observables and indicators of compromise of
the attack campaign Taidoor [143]. This campaign has been active since at
least March 2009. It has initially targeted the Taiwanese government but later
extended its scope to further government agencies, corporate entities and think
tanks [73]. In its typical attack scenario, the targets receive a spear-phishing
email with a decoy document including legitimate content and a malicious
file that when opened in a vulnerable system is silently installed. To obtain
persistence, the Taidoor malware modifies the system’s registry using registry
entries from the file ~dfds3.reg and then contacts the command-and-control
server for further instructions.

In such setting, for instance, the analyst would perform dynamic analysis
on the received file once the targeted email has been highlighted as suspicious
by the detection approach introduced in Chapter 2. As a result of this analysis,
let us consider for example that a request to the URL

http://211.234.117.132/ttgcy.php

is observed in the network traffic generated by the file and that the system
hosting the HTTP server is located in an unusual geographical location, not
commonly contacted by clients in the local network. The analyst decides that
such behavior might be indicative of an attempted attack and decides to further
inspect the issue. First, the authoring interface in Mantis allows the analyst

~

4.4 Evaluation 85

to introduce all the information available about the suspicious HTTP requests.
Then, this data is used to build a STIX Observable that is represented as an
attributed graph and hashed according to the method described in sections 4.2.1
and 4.3.1. After incorporating the new data into the platform, the fingerprint
resulting from hashing the Observable is used to retrieve and rank a list of
relevant objects as described in section 4.3.2.

Table 4.3 Top results retrieved for an HTTP Observable of the Taidoor family.

Query: Observable
HTTP GET to 211.234.117.132/ttgcy.php

Returned results Distance
HTTP GET to 211.234.117.132/klzvp.php 6
HTTP GET to 211.234.117.132/mtlxc.php 8
HTTP GET to 211.234.117.132/wobzz.php 10
STIX MAA Report Vobfus 1 21
STIX MAA Report Vobfus 2 32

Given the real-world dataset stored in the system, Table 4.3 shows the
results returned for the query. For ease of presentation, we only show the
HTTP URL in this listing and omit further details that are part of the HTTP
request CyBOX object, such as the contacted hostname or the user agent. The
first three entries, although not identical to the query, correspond to similar
requests. By following the edges from the return nodes to the corresponding
STIX packages, we are able to immediately identify the HTTP requests as traffic
originating from the Taidoor campaign. The last two returned nodes are not
related to our query, which can be directly concluded from the high Hamming
distance to the query object. Note that we make use of 64-bit fingerprints and
thus a distance of 20 bits already corresponds to a disagreement of 33%.

In addition to the capability of performing queries with threat objects of
arbitrary size and complexity thanks to the unified representation introduced
in section 4.2.1, Mantis similarity-based search represents an advantage over
standard threat intelligence platforms even for simpler queries. Systems such as
CRITS [34], which operates with MongoDB as backend or ad-hoc solutions on
top of SIEM platforms like Splunk threat intelligence dashboards [139], base their
threat data correlations on exact matchings. Even for small strings, Mantis
simhash fingerprint allow us to retrieve not only objects containing the same
fact but a ranked list of possible variations of the input query.

86 Response

For instance, let us consider that, in the same investigation, the analyst
finds the suspicious file ~dfds3.reg in a host and, wanting to investigate more
about it, issues a fact query with the name of the file. Based on the data loaded
in the platform, Table 4.4 lists the returned results according to their similarity.

Table 4.4 Top results retrieved for a fact value of the Taidoor family.

Query: Fact Value
~dfds3.reg

Returned results Distance
~dfds3.reg 0
~dfds3.reg 0
3fdata.reg 15
C:\DOCUME~1\acs\LOCALS~1\Temp\~dfds3.reg 25
~cnf.reg 27

The same file has been found in two different objects which are thus identical
to the query and appear in the first place. The fourth result, although not
identical, also contains the same file name and is therefore returned as result.
By following the edges to its corresponding STIX package, we assert that it
represents the same indicator of compromise from the Taidoor campaign.

Finally and although not exemplified here, the analyst can also query
the system with a full threat report or a complete part of a larger report as
explained in Section 4.3.2. The system will then retrieve those subgraphs
similar to the query and rank them according to the hamming distance of their
simhash fingerprints. To formally evaluate the performance of our method, we
consider these different types of queries and analyze in the following sections
how relevant the retrieved results are according to their class and the class of
the query.

4.4.3 Quantitative Evaluation

From the perspective of the security analyst, our platform resembles the
operation of an information retrieval system: an analyst enters a query and
retrieves a list of relevant nodes from the attributed graphs. So in essence,
Mantis functions like a search engine and its performance will be as good
as the relevance of the results retrieved. Accordingly, in order to evaluate its
performance qualitatively we make use of a metric that is widely employed
to assess the performance of search algorithms: the mean average precision

~
~
~
~
~

4.4 Evaluation 87

(MAP) [27]. The MAP averages the precision of a retrieval system over a set of
queries Q for different numbers k of retrieved results. Formally, it is defined as

MAP(Q) =
1

|Q|

|Q|∑

j=1

1

mj

mj∑

k=1

Precision(Rjk), (4.4)

where Q is the set of queries, mj the number of relevant nodes to the query
qj ∈ Q and Rjk the top retrieved nodes for the query qj up to the k-th relevant
node. Moreover, we consider a node to be relevant, if it is associated with
the same AV label as the object used as the query. For a single query, the
average precision is the mean of the precision values obtained for the set of top
k documents. This average value is then averaged over all possible queries [27],
in our case all available facts, nodes or subgraphs.

To understand the intuition behind this metric we consider again the
example of a search engine. The performance of a query is better when more
relevant results are returned on the first page of the search engine, that is, we
get a high precision value for the top k results [27]. Furthermore, the MAP
score can be interpreted as the percentage of relevant objects in the returned
results. For example, a MAP of 75% implies that 3 out of 4 returned results
are relevant to the query.

We compute the MAP for our platform by considering all facts, all nodes
or all subgraphs reachable from a node as queries to the system. To gain
further insights into the similarity analysis, we repeat the queries with different
number of retrieved objects k and different numbers of bits to match between
the fingerprints. The results of this experiment are presented in Figure 4.5,
where the MAP is plotted for the different experimental setups.

We note that the quality of the returned results depends on the complexity
of the query. If subgraphs are used as query, Mantis is able to achieve a MAP
value of 80%, such that 4 out of 5 returned results are relevant and constitute
similar threats. If the analyst enters only a node or a fact as query, the MAP
decreases. However, even when entering only single facts, our platform attains
a MAP of at least 50%, thus providing retrieval results where every second
result matters. Moreover, our platform reaches a good MAP already at 15
retrieved items (Figure 4.5b) which is a reasonable amount of information to
display on the first results page of the search interface.

88 Response

0 10 20 30 40 50 60
Max. Hash Distance (bits)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (k
 =

 2
0)

Subgraph Node Fact

(a) MAP vs. maximum Hamming distance
between fingerprints.

0 10 20 30 40 50
Max. Retrieved Nodes (k)

0.55

0.60

0.65

0.70

0.75

0.80

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Subgraph Node Fact

(b) MAP vs. maximum number of retrieved
results.

Fig. 4.5 Mean average precision (MAP) for queries of different complexity.

As our dataset comprises a wide range of malware samples, we study how
the diversity in the data affects the performance. Some samples, for instance,
originate from small attack campaigns, while others are part of more common
botnet and phishing activity. We evaluate then the results returned by the
system when the queries belong to individual malware families. Figure 4.6 shows
the amount of nodes and facts in each of the families. Note the logarithmic
scale, that indicates a skewed distribution of samples per type of malware.
Nonetheless and as shown in Figure 4.7, the unbalanced distribution has only a
limited effect on the performance of our approach. Individual facts are retrieved
with a MAP above 50% for most of the malware families, that is, every second
returned result corresponds to the same malware family as the query. This is a
remarkable result given that only individual facts, such as file names or URLs,
are used to query the system.

Finally, scalability is another concern when designing an information re-
trieval system that is intended to accommodate large amounts of data. Fig-
ure 4.8a shows the evolution of the number of nodes and facts that need to
be stored in the system per number of STIX reports imported. In both cases,
a linear relation exist. As a result, we can expect our fingerprint indexes
to also grow linearly with the number of imported reports. Moreover, every
time the analyst introduces an individual fact or several facts as part of a
construct, the fingerprint for each of them needs to be computed. As mentioned
in Section 4.3.2, finding matching fingerprints for a query fingerprint F can
be completed in O(p), but the time computation of the fingerprint for the

4.4 Evaluation 89

vi
rlo

ck

al
la

pl
e

ra
m

ni
t

sy
m

m
i

vo
bf

us

m
ad

an
ge

l

lo
ad

m
on

ey

au
to

it

ou
tb

ro
w

se

ne
sh

ta

m
or

st
ar

el
ke

rn

al
m

an

ex
pi

ro

sw
ift

br
ow

se

eo
re

zo

Malware Family

10
0

10
1

10
2

10
3

10
4

C
on

st
ru

ct
s

in
 d

at
as

et

10
1

10
2

10
3

10
4

10
5

Fa
ct

s
in

 d
at

as
et

Nodes Facts

Fig. 4.6 Total number of constructs and facts per family.

query object is directly related to its size. Figure 4.8b shows how even for
large subgraphs with more than 2000 n-grams, the simhash fingerprint can be
computed in less than 20 milliseconds with a linear dependency to the number
of n-grams.

4.4.4 Qualitative Evaluation

To evaluate our approach qualitatively, we consider a small set of STIX packages
from the Stuxnet and Regin attack campaigns. Such highly targeted APTs
are characterized by disparate indicators of compromise and are typically very
elusive to identify. Stuxnet, for instance, which was initially discovered in 2010,
is a sophisticated malware developed by west state-nations in order to sabotage
the nuclear program of Iran. After remaining undetected for some time, its
uncontrolled propagation through several attack vectors led to the identification
of different variants in systems worldwide [32, 92]. The Regin trojan, on the
other hand, is an advanced espionage tool that was used to surveil several
companies and government entities including the European Council. Due to its
stealth techniques, different variants of the malware remained unnoticed for
several years until their discovery in 2011 [31, 91].

Thus, we evaluate the performance of our method when the analyst tries to
retrieve such indicators from among more generic threat data. After loading a

90 Response

vi
rlo

ck

al
la

pl
e

ra
m

ni
t

sy
m

m
i

vo
bf

us

m
ad

an
ge

l

lo
ad

m
on

ey

au
to

it

ou
tb

ro
w

se

ne
sh

ta

m
or

st
ar

el
ke

rn

al
m

an

ex
pi

ro

sw
ift

br
ow

se

eo
re

zo

Malware Family

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (k
 =

 2
0)

Subgraph (b=12) Node (b=17) Fact (b=25)

Fig. 4.7 MAP for each family with best b and k = 20.

set of 31 and 10 STIX reports of the Stuxnet and Regin campaigns, respectively,
we measure the mean average precision of the results when objects from these
campaigns are used as queries. Additionally, we compare our method with
the performance of searches based on exact fact matchings, as this type of
retrieval strategy is the default approach used in threat intelligence engines
and standard databases.

Table 4.5 Raw APT dataset indexed by Mantis.

Stuxnet Regin Total in
Database

STIX Reports 31 10 2,662
Subgraphs 1,052 132 20,692
Nodes 557 76 15,620
Facts 4,785 1,395 52,195

Table 4.5 shows the number of APT reports and objects loaded into the
system in relation to the total number of objects present in the platform. Thus,
in Figure 4.9, each column indicates the MAP over all queries when similarity is
measured through a specific type of object hash. The objects from the Stuxnet
APT are retrieved with a MAP over 85% for subgraph-, node- and fact-based
queries, while in the case of the Regin APT, fact-based queries allow to retrieve
correct results with a MAP of 79%. Unlike in the previous case, the complexity
of larger queries like subgraphs and nodes, do not compensate in average for the

4.5 Limitations 91

0 500 1000 1500 2000 2500
STIX Reports

0

1

2

3

4

5

6

O
bj

ec
ts

×10
6 NodesFacts

(a) Number of constructs and facts created
per number of STIX reports imported in
Mantis.

0 500 1000 1500 2000
n-gram size

0.000

0.005

0.010

0.015

0.020

0.025

S
im

ha
sh

 C
om

pu
ta

tio
n

Ti
m

e
(s

)

Subgraph Node Fact

(b) Computation Time of the Simhash Fin-
gerprint vs. the number of n-grams in the
object.

Fig. 4.8 Scalability measurements respect to data size and fingerprint computa-
tion time.

small numbers of objects present in the database, making simpler fact queries
more effective. Furthermore and as shown by the baseline performance, queries
based on the similarity of objects in attributed graphs offer a more effective
alternative than generic searches based on exact matchings of facts.

4.5 Limitations

The previous evaluation demonstrates the efficacy of Mantis and our method
to provide relevant similarity-based results for threat data queries. However,
there exist certain limitations.

In the first place, the results of our platform are always bounded to the
data present in the system when the query is issued. That is, an object cannot
be retrieved, if it has not been imported into the system. Although an inherent
limitation of every threat intelligence platform, this can be a disadvantage if
a threat actor executes a targeted attack only once and without repurposing
any part of its infrastructure or programming code. In such a situation, it is
likely that the attack will not be documented and therefore never become part
of a repository or feed of threat data. For such events where no correlation is
possible, reactive solutions like intrusion detection or behavioral analysis can
be more effective to prevent and thwart the attack. For example, we propose
in this work a method for detection of spear-phishing emails as the first step of

92 Response

Stuxnet Regin
APT Malware Family

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (k
 =

 2
0)

Subgraph Node Fact Baseline

Fig. 4.9 MAP for query objects of APT families and comparison with baseline
performance of standard search engines based on exact strings matching.

a comprehensive strategy against targeted attacks. Even if isolated, an email
labeled as suspicious can lead to further investigation, enabling the analyst to
document the incident in our threat intelligence platform.

Second, as other systems that aim at analyzing threat data, Mantis is also
subject to possible evasion attacks. For instance, a threat actor that targets
an organization could use several types of attacks as part of a unique but
large campaign. If the characteristics of such attacks are chosen to be different
enough, it is possible that these events can not be linked to each other through
our similarity analysis, even if each one of them is well documented.

Finally, our method compares n-gram from constructs and facts and, there-
fore determines similarity at a lexical level. Such a comparison can lead to false
positives when unrelated objects share certain n-grams. Yet, as described in
Section 4.3.1, this type of feature representation enables to correlate heteroge-
neous data even in situations where the standard is used incorrectly or when
the type of the data is unknown like, for example, in the case of binary strings
that are part of indicators of compromise.

4.6 Related Work

The body of work addressing threat intelligence issues has seen a surge in recent
years thanks to the development of new sharing formats. Interestingly however,
almost no previous work has been concerned with unifying and comparing

4.6 Related Work 93

the data described through different standards, as we do in this chapter. Yet,
several active and relevant areas exist that explore related research questions:

Threat intelligence. Although the security community has always been
keen on sharing threat data for the sake of learning about new attacks and
building better defenses, such pieces of individual information lack the necessary
context to capture the complexity of the current threat landscape. As discussed
by Barnum [7], the community-driven effort to design and extend the STIX
format constitutes the most relevant and recent work to define a language that
can represent such information in a structured and holistic way.

Being this a recent development, current academic research is yet trying to
understand the ecosystem of threat intelligence data by creating taxonomies
and models [16]. Most researchers recognize the benefits of these technologies
but their focus still lies on the design and implementation of efficient sharing
systems [135, 140, 84] and the privacy implications resulting from distributing
sensitive security data across heterogeneous organizations [49, 68]. Moreover,
practitioners acknowledge the potential improvements for situational aware-
ness [50, 111] that comes from the sharing, storage and analysis of threat
intelligence information but also the difficulty to ensure consistent interpreta-
tion without the need of the analyst. Kampanakis [79], for example, presents
an analysis of all the standards under current development and points to the
underestimated challenge of data collection and automatic analysis. This is
exactly the field of operation of Mantis.

Most approaches in this direction stem from non-academic initiatives and are
being developed both by the security community and by commercial companies
like Microsoft [57], which holds large amounts of security data from its customers.
For instance, the open-source framework CRITS [34] presents some resemblance
to Mantis. In particular, bucket lists and relationships can be assigned to
top level objects in order to identify campaigns and attributions. However,
these assignments need to be done manually by the analyst whereas finding
such correlations and matchings automatically is precisely the main goal of
our method. Finally, Woods et al. [154] have recently proposed a system
to infer similarity relationships and functional clusters of indicators using
information about reporting patterns. Although close to our work in its goal
and methodology, their approach relies on data not based on standardized open
formats.

94 Response

Information retrieval for security. Tangential to our research is the
field of information retrieval which covers a huge body of previous research
and work. For brevity, we herein consider only previous research which like
ours, makes use of information retrieval and data mining techniques for solving
security problems. In particular, there exist several authors that deal with the
question of how to efficiently detect and analyze new malware variants which
have been submitted to application stores or analysis platforms by analyzing
the output reports of their dynamic and static analysis [e.g., 59, 22, 76, 9].
Graziano et al. [59] present, for example, a method that can be used to identify
new malware variants in samples that have been submitted to such an analysis
platform. To this end, they cluster the samples based on binary similarity using
ssdeep fuzzy hashes and code-based features which allow them to identify similar
malware samples using machine learning techniques. Although we also address
in our work the problem of identifying similar strains of malware, both in
Chapter 3 and in this chapter, their scope is limited to types of malware, where
the broader view achieved by our platform allow us to pinpoint disconnected
elements from the same campaign.

Another line of research in security that has combined information retrieval
techniques and analysis of structured data focuses on the identification of
similar or even copied segments in code of large software projects [144, 132, 85].
In particular, Uddin et al. [144] demonstrate in their work that the simhash
algorithm can help to detect similar code regions. While different in scope
to our method, their approach also proves the effectiveness of the method
proposed by Charikar as the basis to implement techniques that can identify
similar entities in large repositories of data.

4.7 Summary

In this chapter we present Mantis, a system that enables the authoring, collec-
tion and, most importantly, the analysis and correlation of threat intelligence
data. To the best of our knowledge, Mantis was at its original introduction,
the first open-source platform to provide a unified representation of constructs
from standard threat data that allows for assessing the similarity between het-
erogeneous reports at different levels of granularity regardless of their content,
size or structure.

We evaluate the performance of Mantis as an information retrieval system
for threat intelligence in a series of experiments, where it enables an effective

4.7 Summary 95

retrieval of relevant threat data. For example, given a documented security
incident with a malware family, the similarity search integrated in Mantis
allows to retrieve related objects with a mean average precision of over 80%.
That is, 4 out of 5 returned results correspond to the same malware family
as the query. Moreover, we demonstrate the ability of our system to handle
a continuous stream of data in terms of growth and computation time of our
similarity measure. Finally, we show with a simple but illustrative use case
how Mantis can be used to assist the analyst in her investigation of a security
incident.

In summary, after a threat has been detected and characterized through
further analysis as discussed in Chapters 2 and 3, the platform and methods
introduced in this chapter represent an effective set of tools for the response
phase, allowing the analyst to complete a holistic strategy against targeted
attacks.

05

Conclusions and Outlook

The ability to inflict significant damage to a country, its institutions or the
members of civil society has been reserved in the past to nation-states or
organizations with a military background. Today, however, and thanks to the
unbounded reach of unsecure software, we are witnessing a global computer
security arms race. Not only traditional actors are investing heavily on offensive
computer capabilities, but a whole new legal and mostly unregulated industry
is thriving by providing malicious software to law enforcement and intelligence
agencies.

Although research in software security has yielded massive improvements
during the last two decades,there is, unfortunately, no general change of
paradigm in sight that can guarantee the implementation of secure programs. At
the same time and while awareness about the security risks of software systems
keeps increasing among users, social engineering techniques will continue to be
effective against the general population. In addition to that, such risks will be
exacerbated by connecting everybody and everything to the internet. Every
year around 200 million new users get online [75] and networking capabilities
are added to every piece of infrastructure, transforming de facto everything into
a connected computer. As a result, the number of potential targets, the tech-
niques for compromise and the opportunities for causing damage will continue
to steadily increase.

98 Conclusions and Outlook

Consequently, there is an acute need for assisting security experts with
innovative technical solutions against security risks in general and, considering
the greater challenge posed by motivated threat actors, against targeted attacks
in particular.

In this thesis, we aim, thus, at providing a holistic solution against targeted
attacks by focusing on specific problems faced during each one of the phases of a
comprehensive defense strategy: detection, analysis and response. Respectively,
we propose methods to detect spear-phishing emails, perform malware triage
at scale and generate insights based on large scale threat intelligence.

With our work, we provide security practitioners with an effective set
of tools for fending off advanced persistent threats. First, our approach to
detect targeted emails without relying on their content renders the main vector
exploited in targeted attacks unusable. While actors behind targeted attacks
make use of several vectors for infection such as watering hole websites or
trojanized software updates, as of 2017, 71% of organized groups tracked by
Symantec relied on spear-phishing messages to compromise their victims [142].
Second, our techniques for malware triage enable the analyst to extend the
capabilities of traditional sandboxing approaches to leverage the recent advances
in machine learning classification and exploiting the structural attributes of
binary code. Although the use of zero-day exploits is not prevalent in targeted
campaigns, malicious code is still the main instrument for stealing, spying
or sabotaging and therefore a key source of threat intelligence for defenders.
Finally, our information-retrieval platform for threat intelligence enables the
collection, authoring and correlation of threat data in order to link traces of
ongoing attacks with existing information about known actors.

As a whole, the approaches proposed in this thesis can be easily adopted
and implemented locally by the security team at any organization. For instance,
as discussed in Chapter 2, content in suspicious emails can be blocked before
reaching its target. These attachments or files obtained through sensitive
links can be analyzed through the methods introduced in Chapter 3 and any
information obtained can be correlated with additional threat intelligence as
proposed in Chapter 4.

Against these measures, threat actors will be forced to put more effort into
carrying out a successful attack. For instance, by obtaining email data to
attempt evading our detection method, investing more into the implementation
of malicious code to avoid attribution and developing new tactics to remain
stealth. As a result, defenders will be better protected, also in the long term, as

5.1 Summary of Results 99

the features proposed for detecting spear-phishing are based on metadata that is
expected to remain necessary for email to function correctly. In addition, other
messaging protocols without proper authentication measures could implement
a similar approach, as long as there exists metadata that can be used to build
a profile of each user. In the near future, such an approach could be used to
protect users from social engineering attacks performed through chatbots with
high language capabilities. Moreover, the approaches proposed for malware
triage and correlation of threat intelligence can help heightening awareness
among the security community leading to better coordination in defensive
research and increased shared support for changes that complement technical
solutions at the policy level.

From a methodological perspective, the solutions proposed in this thesis
follow a similar technical schema. In order to exploit the inherent structure of
data, corresponding abstractions are designed to let machine learning algorithms
operate on the input problem space. Such an approach is extensible to other
problems for which the identification of patterns in large pools of data can
represent a strategic advantage, a usual situation in computer security in
particular but also in computer science in general. Furthermore, such a technical
schema allows for reusing the abstractions proposed in this thesis and applying
similar data analysis approaches to different problems. We explore some of
these ideas for future work in Section 5.2.

In the following, we contextualize and summarize the solutions and results
proposed in this thesis. Then and to conclude our work, we outline different
avenues for research, for which the ideas introduced in this dissertation can
serve as stepping stones.

5.1 Summary of Results

Following the structure of our multifaceted proposition for defense against
targeted attacks and organized along the phases of detection, analysis and
response, the main results introduced in this thesis are thus three-fold. First,
we propose a method to detect the attempt to compromise a target through the
most common attack vector. Next, we present a series of analysis mechanisms
based on the structural characterization of binary code that supports the
analyst at understanding malicious code at scale and, finally, we introduce a
platform that enables the response of the analyst in terms of authoring, sharing

100 Conclusions and Outlook

and correlating threat intelligence. Each of these solutions is made possible by
a series of particular results that we summarize as follows.

Detection. In this thesis, we have introduced a content-agnostic method
for detecting spoofed emails as a proxy for thwarting spear-phishing attacks.
We identify a series of behavior, composition and transport email features, that
allow us to to define sender profiles and effectively characterize each email
sender in the common absence of additional authentication mechanisms. Given
the ability of a resourceful actor to create seemingly legit emails, we then
propose to use these content-agnostic profiles as input for machine learning
classifiers and identify a mismatch between their output and the sender of an
email as a spoofing attempt.

Our experiments demonstrate that our approach can discriminate thousands
of senders and identify spoofed emails with high accuracy. Moreover, we show
that the traits of a sender profile are hard to guess and spoofing only succeeds
if entire emails of a sender are available to the attacker (Chapter 2).

Analysis. We have proposed a representation for binary code based on
function call graphs and a generic labeling scheme that enables the analyst
to obtain a structural characterization of malicious code without information
about function names and that is robust against certain obfuscation techniques,
such as function renaming or instruction reordering.

Based on this representation we have introduced two graph embedding
approaches that complement each other along the trade-off between explain-
ability and accuracy. First, we have proposed an explicit high dimensional
feature map inspired by the neighborhood hash graph kernel which allows for
explainable decisions when used in combination with linear machine learning
algorithms. Second, we have proposed an approach to learn a low dimensional
feature map through a deep neural network architecture based on an adapted
implementation of structure2vec and parametrized through a siamese network.
This architecture allows to embed latent variable models into feature spaces
using discriminative information, which in our problem space can be defined as
the family or campaign of a malware sample.

With the help of a well known dataset of x68 malware, we evaluate the
performance of a series of state-of-the-art machine learning algorithms for
malware triage when fed with data embedded in both feature maps. To this
end, we compare their results at clustering and classification, in unsupervised,

5.2 Future Work 101

semi-supervised and supervised experiments. In particular, we illustrate how
clustering results can be improved by learning a feature map when some labeling
information is available. Moreover, we show that, in a multiclass setup, both
representations allow to assign an unknown malware sample to its family with
high performance. Likewise, we demonstrate how both representations allow
for an effective identification of new strains of malware in an anomaly detection
setup (Chapter 3).

Response. We have introduced Mantis, an open-source platform for
authoring, sharing and collecting threat intelligence and, in addition, devised
a unified representation based on attributed graphs for competing threat
intelligence standards that serves as the data model for our platform. Based
on this representation, we have proposed a similarity algorithm for attributed
graphs that enables uncovering relations between threats at different levels of
granularity. Incorporated into our platform, Mantis becomes an information
retrieval system that is capable of retrieving related reports given individual
observations from security incidents.

We evaluate how an analyst can effectively leverage our platform for threat
intelligence in a series of quantitative and qualitative experiments and show
how our platform helps investigating a security incident given certain traces of
an ongoing attack. For instance, we illustrate the performance of this analysis
in two case studies with the attack campaigns Stuxnet and Regin (Chapter 4).

5.2 Future Work

Given that no solution will ever provide perfect security in isolation, we believe
that the methods proposed in this thesis raise the bar against targeted threats
and will help security practitioners thwart, understand and prevent persistent
attacks when used in combination with other security mechanisms and as part
of an integral defense strategy. Furthermore, we are confident that many of
the ideas introduced in this dissertation will foster new developments in the
field and open new avenues for research. Some of these might include:

Defense against targeted SEO Poisoning. In very sophisticated cases,
a targeted e-mail might not even contain a link or attachment but just a hint
to a piece of information interesting to the victim (e.g. the name of a report, a
person, an event, etc.). In this scenario, the attacker expects the victim to query
a search engine for more details on the information. However, the attacker has

102 Conclusions and Outlook

previously poisoned the results provided by the search engine for that specific
query with one or more links to malicious sites. While our approach to identify
targeted emails would also highlight such messages as suspicious, our method
could be used in combination with language processing techniques to extract
certain patterns that could be used as queries for identification of malicious
sites and the further gathering of threat intelligence.

Applications of structure-based code analysis. Our approach for
malware triage builds on graph classification concepts that have proven their
utility for our specific problem. However, we expect these ideas to find additional
applications in the security research field. For instance, in the context of
malware analysis, our approach for structural analysis of code can be used
for characterizing the behavior of malicious code during detection, as the
explicit embedding can reveal what functions are the most characteristics in
malware [see 56]. In the same vein, our ideas have already been useful for binary
code attribution [18], where further research on targeted attacks could leverage
our explicit representation to identify elements in code that characterize a
certain actor. Likewise, these representations have also found applicability in
the field of vulnerability discovery [e.g. 158, 157], where the embedded structure
of binary code can help finding patterns that identify known types of errors in
a program.

Advanced analytics for large scale threat intelligence. While threat
intelligence standards are intended to ease sharing and analysis, most of the
current discussion revolves around better exchange strategies. As a consequence,
work on techniques for automatic analysis is almost non-existent and available
tools mostly provide statistics and equality-based searches. Our work thus sets
the ground for new research that in combination with modern data analysis
techniques aims at capitalizing the structured design of the standards for a
better insight on threats. While the adoption of standards is still increasing,
security analysts need to take full advantage of the possibilities offered by these
formats. Although still underused, these are certainly complex and allow to
capture with a high degree of precision information regarding, not only threats,
but also courses of actions or defense strategies. Furthermore, we observe
a substantial lack of public threat intelligence resources. Without question,
the number of threats continues to grow but most valuable and elaborated
threat data is only available under subscription feeds provided by private

5.2 Future Work 103

companies or held within organizations. This prevents small entities with little
resources like NGOs or non-profits from accessing these data and improving
their protection mechanisms. Therefore, we encourage national CERTs and
other public organizations to publish their threat data by means of standardized
formats.

0A

Traits in Email Structure for
Characterization of Senders

Tables A.1, A.2 and A.3 provide an overview of the different traits characterizing
the behavior, composition and transport of emails, respectively.

106 Traits in Email Structure for Characterization of Senders

Table
A

.1
List

ofbehavior
features.

Id
entifi

er
C

ard
in

ality
D

escrip
tion

E
xam

p
les

attachment-type
n

T
ype

of
attachm

ent
attachment-type(image)

hdr-empty
n

H
eaders

w
ith

em
pty

values
hdr-empty(cc)

hdr-local-domain
n

H
eaders

indicating
localdom

ains
hdr-local-domain(to:D0)

hdr-related-mails
n

H
eaders

indicating
relation

to
other

em
ails

hdr-related-mails(subject:re)
hdr-count

n
N

um
ber

of
standard

headers
and

their
values

hdrcount(cc:1:2+)
hdr-x

n
O

ccurrences
of

non-standard
headers

hdr-x(x-virus-scanned)
msgid

n
Structuraldescription

of
Message-Id

header
msgid(<A.A@H>)

reply-to
n

H
ashed

sender
in

Reply-To
header

reply-to(xxx)
resent

1
H

eaders
indicate

redistribution
resent(1)

return-path
n

Sender
in

Return-Path
header

return-path(full:same-as-from)
text-quoted

1
R

atio
of

quoted
totaltext

in
m

ain
part

text-quoted(0.3)
frompart

n
2-gram

s
of

From
field

frompart(xxx:yyy)
from

n
M

ultiple
senders

in
From

header
from(full:*)

107

Ta
bl

e
A

.2
Li

st
of

co
m

po
si

ti
on

fe
at

ur
es

.

Id
en

ti
fi
er

C
ar

d
in

al
it
y

D
es

cr
ip

ti
on

E
xa

m
p
le

s

ba
se

64
n

P
ec

ul
ia

ri
ti

es
of

B
as

e6
4

tr
an

sf
er

en
co

di
ng

ba
se

64
(l

in
el

en
(7

2)
)

qu
ot

ed
-p

ri
nt

ab
le

n
P
ec

ul
ia

ri
ti

es
of

Q
uo

te
d-

P
ri

nt
ab

le
tr

an
sf

er
en

co
di

ng
qu

ot
ed

-p
ri

nt
ab

le
(u

ne
nc

od
ed

-c
tr

l)
7b

it
n

P
ec

ul
ia

ri
ti

es
of

7b
it

tr
an

sf
er

en
co

di
ng

7b
it

(7
bi

t-
co

nt
ai

ns
-8

bi
t)

8b
it

n
P
ec

ul
ia

ri
ti

es
of

8b
it

tr
an

sf
er

en
co

di
ng

8b
it

(l
on

g-
li

ne
)

at
ta

ch
me

nt
-e

xt
n

E
xt

en
si

on
of

th
e

at
ta

ch
m

en
t

at
ta

ch
me

nt
-e

xt
(d

oc
)

at
ta

ch
me

nt
-m

is
m

n
M

is
m

at
ch

of
at

ta
ch

m
en

t
ty

pe
an

d
ex

te
ns

io
n

at
ta

ch
me

nt
-m

is
m(

do
c|

zi
p)

at
ta

ch
me

nt
-s

ig
1

Si
gn

at
ur

e
of

ho
w

th
e

at
ta

ch
m

en
t

is
sp

ec
ifi

ed
at

ta
ch

me
nt

-s
ig

(f
Tn

T)
in

li
ne

-e
xt

n
E

xt
en

si
on

of
at

ta
ch

m
en

t
w

he
n

di
sp

os
it

io
n

in
lin

e
in

li
ne

-e
xt

(j
pe

g)
no

di
sp

os
it

io
n-

ex
t

n
E

xt
en

si
on

of
at

ta
ch

m
en

t
if

no
di

sp
os

it
io

n
is

gi
ve

n
no

di
sp

os
it

io
n-

ex
t(

jp
eg

)
bo

un
da

ry
n

St
ru

ct
ur

al
de

sc
ri

pt
io

n
of

th
e

M
IM

E
bo

un
da

ry
bo

un
da

ry
(-

=_
H-

H-
H)

hd
r-

sy
nt

ax
n

Sy
nt

ac
ti

c
fo

rm
at

of
he

ad
er

s
hd

r-
sy

nt
ax

(s
ub

je
ct

:q
:I

SO
-8

85
9-

1)
hd

r-
pa

ir
n

P
ai

r-
w

is
e

or
de

r
of

he
ad

er
s

hd
r-

pa
ir

(f
ro

m:
da

te
)

pa
rt

-h
dr

-p
ai

r
n

P
ai

r-
w

is
e

or
de

r
of

he
ad

er
s

in
M

IM
E

pa
rt

s
pa

rt
-h

dr
-p

ai
r(

co
nt

en
t-

ty
pe

:c
on

te
nt

-i
d)

ua
n

Si
m

pl
ifi

ed
na

m
e

of
us

er
ag

en
t

ua
(o

ut
lo

ok
16

)
pr

ea
mb

le
n

D
ig

es
t

of
th

e
M

IM
E

pr
ea

m
bl

e
pr

ea
mb

le
(c

92
8c

8b
f)

mi
me

n
P
ec

ul
ia

ri
ti

es
of

M
IM

E
us

ag
e

mi
me

(c
d:

in
li

ne
+f

il
en

am
e)

de
pt

h
1

D
ep

th
of

th
e

M
IM

E
st

ru
ct

ur
e

de
pt

h(
2)

mi
me

-w
ar

ni
ng

n
M

in
or

pr
ob

le
m

s
in

M
IM

E
st

ru
ct

ur
e

mi
me

-w
ar

ni
ng

(i
nv

al
id

-c
on

te
nt

-t
yp

e)
mi

me
-e

rr
or

n
M

aj
or

pr
ob

le
m

s
in

M
IM

E
st

ru
ct

ur
e

mi
me

-e
rr

or
(p

ar
am

va
l-

ju
nk

)
pa

rt
-p

at
h

n
P
at

h
to

M
IM

E
pa

rt
s

pa
rt

-p
at

h(
al

t(
R)

.1
:h

tm
l)

pa
rt

-s
iz

e
n

Si
ze

of
M

IM
E

pa
rt

s
pa

rt
-s

iz
e(

ht
ml

:1
0:

10
00

)
pa

rt
-t

yp
e

n
T

yp
e

of
M

IM
E

pa
rt

s
pa

rt
-t

yp
e(

im
ag

e:
ba

se
64

)

108 Traits in Email Structure for Characterization of Senders

Table
A

.3
List

oftransport
features.

Id
entifi

er
C

ard
in

ality
D

escrip
tion

E
xam

p
les

dkim
n

R
esults

of
D

K
IM

validation
dkim(1:valid),

dkim(2:invalid)
rcvd

1
N

um
ber

of
Received

headers
rccvd(13)

rcvd-pair
n

H
ashes

of
previous

and
current

Received
header

rcvd-pair(xxx:yyy)
rcvd-mta

n
H

ashes
of

M
T
A

features
at

given
header

position
rcvd-mta(1:XXX)

rcvd-src
n

H
ashes

of
source

features
at

given
header

position
rcvd-src(2:xxx)

rcvd-tls
n

H
ashes

of
T

LS
features

at
given

header
position

rcvd-tls(3:xxx)
rcvd-tocc

n
O

ccurrences
of

To
field

in
Received

headers
rcvd-tocc(to:x1)

hdrtz
1

P
ath

of
tim

e
zones

from
Received

headers
hdrtz(-0200:+0800)

hdrtzcost
1

C
ost

of
transport

based
on

the
changes

in
tim

e
zones

hdrtzcost(6)
srcip-asn

1
A

SN
for

source
IP

address
of

client
srcip-asn(8881)

srcip-spf
1

SP
F

result
for

source
IP

address
of

client
srcip-spf(spf:Pass)

References

[1] Sergi Alvarez. Radare2. url: https://github.com/radare/radare2.
[2] Rohan Mahesh Amin. “Detecting Targeted Malicious Email Through

Supervised Classification of Persistent Threat and Recipient Oriented
Features”. PhD thesis. George Washington University, 2010.

[3] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran
Lane. “Graph-based malware detection using dynamic analysis”. In:
Journal in Computer Virology (2011).

[4] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and
Konrad Rieck. “Drebin: Efficient and Explainable Detection of Android
Malware in Your Pocket”. In: Proc. of Network and Distributed System
Security Symposium (NDSS). 2014.

[5] Pierre Baldi and Yves Chauvin. “Neural Networks for Fingerprint Recog-
nition”. In: Neural Computation (1993).

[6] Annalisa Barla, Francesca Odone, and Alessandro Verri. “Histogram
intersection kernel for image classification”. In: Proc. of International
Conference on Image Processing (ICIP). 2003.

[7] Sean Barnum. Standardizing cyber threat intelligence information with
the Structured Threat Information eXpression (STIX). Tech. rep. MITRE
Corporation, 2014.

[8] Brian Bartholomew and Juan Andres Guerrero-Saade. “Wave Your False
Flags! Deception Tactics Muddying Attribution in Targeted Attacks”.
In: Virus Bulletin October (2016).

[9] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher
Kruegel, and Engin Kirda. “Scalable, Behavior-Based Malware Cluster-
ing”. In: Proc. of Network and Distributed System Security Symposium
(NDSS). 2009.

[10] Alina Beygelzimer, Sham Kakade, and John Langford. “Cover trees for
nearest neighbor”. In: Proc. of International Conference on Machine
Learning (ICML). 2006.

[11] Stevens Le Blond, Adina Uritesc, Cédric Gilbert, Zheng Leong Chua,
Prateek Saxena, and Engin Kirda. “A Look at Targeted Attacks Through
the Lense of an NGO”. In: Proc. of USENIX Security Symposium. 2014.

https://github.com/radare/radare2

110 REFERENCES

[12] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vish-
wanathan, Alex J Smola, and Hans-Peter Kriegel. “Protein function
prediction via graph kernels”. In: Bioinformatics (2005).

[13] Karsten Michael Borgwardt. “Graph Kernels”. PhD thesis. Ludwig Max-
imilian University of Munich, 2007.

[14] Jane Bromley, James W. Bentz, Léon Bottoy, Isabelle Guyon, Yann
Lecun, Cliff Moore, Eduard Säckinger, and Roopak Shah. “Signature
Verification Using a “Siamese” Time Delay Neural Network”. In: In-
ternational Journal of Pattern Recognition and Artificial Intelligence
(1993).

[15] BuildWith Technology Lookup. 2017. url: https://builtwith.com.
[16] Eric W. Burger, Michael D. Goodman, Panos Kampanakis, and Kevin

A. Zhu. “Taxonomy Model for Cyber Threat Intelligence Information
Exchange Technologies”. In: Proc. of ACM Workshop on Information
Sharing & Security. 2014.

[17] Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. “Mea-
suring Pay-per-Install: The Commoditization of Malware Distribution”.
In: Proc. of USENIX Security Symposium. 2011.

[18] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan,
Clare Voss, Fabian Yamaguchi, and Rachel Greenstadt. “De-anonymizing
Programmers via Code Stylometry”. In: Proc. of USENIX Security
Symposium. 2015.

[19] Deanna D. Caputo, Shari Lawrence Pfleeger, Jesse D. Freeman, and
M. Eric Johnson. “Going spear phishing: Exploring embedded training
and awareness”. In: IEEE Security & Privacy 12.1 (2014).

[20] Silvio Cesare and Yang Xiang. “Classification of malware using structured
control flow”. In: Proc. of 8th Australasian Symposium on Parallel and
Distributed Computing. 2010.

[21] Silvio Cesare and Yang Xiang. “Malware Variant Detection Using Similar-
ity Search over Sets of Control Flow Graphs”. In: Proc. of International
Conference on Trust, Security and Privacy in Computing and Commu-
nications (TrustCom). 2011.

[22] Saurabh Chakradeo, Bradley Reaves, Patrick Traynor, and William
Enck. “MAST: Triage for Market-scale Mobile Malware Analysis”. In:
Proc. of ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WISEC). 2013.

[23] Moses S. Charikar. “Similarity estimation techniques from rounding
algorithms”. In: Proc. of 34th annual ACM symposium on Theory of
computing. 2002.

[24] Ping Chen, Lieven Desmet, and Christophe Huygens. “A study on
advanced persistent threats”. In: Proc of IFIP International Conference
on Communications and Multimedia Security. 2014.

https://builtwith.com

References 111

[25] Zhi-Guo Chen, Ho-Seok Kang, Shang-Nan Yin, and Sung-Ryul Kim.
“Automatic Ransomware Detection and Analysis Based on Dynamic API
Calls Flow Graph”. In: Proc. of International Conference on Research
in Adaptive and Convergent Systems (RACS). 2017.

[26] Sumit Chopra, Raia Hadsell, and Yann LeCun. “Learning a similiarty
metric discriminatively, with application to face verification (CVPR)”. In:
Proc. of IEEE Conference on Computer Vision and Pattern Recognition.
2005.

[27] D Manning Christopher, Raghavan Prabhakar, and Schutza Hinrich. “In-
troduction to information retrieval”. In: An Introduction To Information
Retrieval 151.177 (2008).

[28] Collective Intelligence Framework. 2016. url: http://csirtgadgets.org/
collective-intelligence-framework.

[29] Symantec Corporation. Advanced Persistent Threats: A Symantec Per-
spective. 2011.

[30] Symantec Corporation. Butterfly: Corporate spies out for financial gain.
2015.

[31] Symantec Corporation. Regin: Top-tier espionage tool enables stealthy
surveillance. Symantec Security Response. 2015.

[32] Symantec Corporation. Stuxnet 0.5: The Missing Link. Symantec Secu-
rity Response. 2013.

[33] Masashi Crete-Nishihata, Jakub Dalek, and Ronald Deibert. Communi-
ties@ Risk: Targeted Digital Threats Against Civil Society. Citizen Lab,
Munk Centre for International Studies, University of Toronto, 2014.

[34] Collaborative Research Into Threats. 2016. url: http://crits.github.io.
[35] Jonathan Crussell, Clint Gibler, and Hao Chen. “Attack of the Clones:

Detecting Cloned Applications on Android Markets”. In: Proc. of Euro-
pean Symposium on Research in Computer Security (ESORICS). 2012.

[36] Neil D. Lawrence and Bernhard Schölkopf. “Estimating a Kernel Fisher
Discriminant in the Presence of Label Noise”. In: Proc. of International
Conference on Machine Learning (ICML). 2001.

[37] Hanjun Dai, Bo Dai, and Le Song. “Discriminative Embeddings of Latent
Variable Models for Structured Data”. In: arXiv (2016).

[38] Marc Damashek. “Gauging Similarity with n-Grams: Language-Independent
Categorization of Text”. In: Science 267.5199 (1995).

[39] Roman Danyliw, Jan Meijer, and Yuri Demchenko. The Incident Object
Description Exchange Format (IODEF). Tech. rep. IETF RFC 5070,
2007.

[40] Red en Defensa de los Derechos Digitales. Gobierno Espía - Vigilancia
sistemática a periodistas y defensores de derechos humanos en México.
Tech. rep. 2017. url: https://r3d.mx/gobiernoespia/.

[41] Stephen Doherty, Jozsef Gegeny, Branko Spasojevic, and Jonell Baltazar.
“Hidden Lynx–Professional Hackers for Hire”. In: Symantec Security
Response Blog (2013).

http://csirtgadgets.org/collective-intelligence-framework
http://csirtgadgets.org/collective-intelligence-framework
http://crits.github.io
https://r3d.mx/gobiernoespia/

112 REFERENCES

[42] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification.
John Wiley & Sons, 2012.

[43] Thomas Dullien and Rolf Rolles. “Graph-based comparison of executable
objects”. In: Proc. of Symposium sur la Securite des Technologies de
L’information et des communications. 2005.

[44] Sevtap Duman, Kubra Kalkan Cakmakci, Manuel Egele, William Robert-
son, and Engin Kirda. “EmailProfiler: Spearphishing Filtering with
Header and Stylometric Features of Emails”. In: Proc. of IEEE Com-
puter Software and Applications Conference (COMPSAC). 2016.

[45] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua
Zheng, and Ting Liu. “Android Malware Familial Classification and Rep-
resentative Sample Selection via Frequent Subgraph Analysis”. In: IEEE
Transactions on Information Forensics and Security (TIFS) (2018).

[46] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. “LIBLINEAR: A library for large linear classification”. In:
Journal of Machine Learning Research (JMLR) 9.Aug (2008).

[47] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern Recognition
Letters 27.8 (2006).

[48] Ian Fette, Norman Sadeh, and Anthony Tomasic. “Learning to Detect
Phishing Emails”. In: Proc. of International World Wide Web Conference
(WWW). 2007.

[49] Gina Fisk, Calvin Ardi, Neale Pickett, John Heidemann, Mike Fisk, and
Christos Papadopoulos. “Privacy Principles for Sharing Cyber Security
Data”. In: Proc. of IEEE International Workshop on Privacy Engineering.
2015.

[50] Peter Fonash. Using Automated Cyber Threat Exchange to Turn the
Tide against DDOS. RSA Conference. 2014.

[51] Ian D. Foster, Jon Larson, Max Masich, Alex C. Snoeren, Stefan Savage,
and Kirill Levchenko. “Security by Any Other Name: On the Effectiveness
of Provider Based Email Security”. In: Proc. of ACM Conference on
Computer and Communications Security (CCS). 2015.

[52] Hugo Gascon, Bernd Grobauer, Thomas Schreck, Lukas Rist, Daniel Arp,
and Konrad Rieck. “Mining Attributed Graphs for Threat Intelligence”.
In: Proc. of ACM Conference on Data and Application Security and
Privacy (CODASPY). 2017.

[53] Hugo Gascon, Sebastian Uellenbeck, Christopher Wolf, and Konrad
Rieck. “Continuous Authentication on Mobile Devices by Analysis of Typ-
ing Motion Behavior”. In: Proc. of GI Conference “Sicherheit” (Sicherheit,
Schutz und Verlässlichkeit). 2014.

[54] Hugo Gascon, Steffen Ullrich, Benjamin Stritter, and Konrad Rieck.
“Reading Between the Lines: Content-Agnostic Detection of Spear-
Phishing Emails”. In: Recent Adances in Intrusion Detection (RAID).
2018.

References 113

[55] Hugo Gascon, Christian Wressnegger, Fabian Yamaguchi, Daniel Arp,
and Konrad Rieck. “Pulsar: Stateful black-box fuzzing of proprietary
network protocols”. In: Proc. of International Conference on Security
and Privacy in Communication Networks (SECURECOMM). 2015.

[56] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. “Struc-
tural Detection of Android Malware using Embedded Call Graphs”. In:
Proc. of ACM Workshop on Artificial Intelligence and Security (AISEC).
2013.

[57] Cristin Goodwin, J Paul Nicholas, Jerry Bryant, Kaja Ciglic, Aaron
Kleiner, Cornelia Kutterer, Alison Massagli, Angela Mckay, Paul Mck-
itrick, Jan Neutze, Tyson Storch, and Kevin Sullivan. A framework for
cybersecurity information sharing and risk reduction. Tech. rep. Microsoft
Corporation, 2015.

[58] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian
Jiang. “RiskRanker: scalable and accurate zero-day android malware
detection”. In: Proc. of International Conference on Mobile Systems,
Applications, and Services (MOBISYS). 2012.

[59] Mariano Graziano, Davide Canali, Leyla Bilge, Andrea Lanzi, and
Davide Balzarotti. “Needles in a Haystack: Mining Information from
Public Dynamic Analysis Sandboxes for Malware Intelligence”. In: Proc.
of USENIX Security Symposium. 2015.

[60] Greathorn. Spear Phishing Report. 2017. url: https://info.greathorn.
com/2017-spear-phishing-report.

[61] Surbhi Gupta, Abhishek Singhal, and Akanksha Kapoor. “A literature
survey on social engineering attacks: Phishing attack”. In: Proc. of
IEEE International Conference on Computing, Communication and
Automation (ICCCA). 2016.

[62] Raia Hadsell, Sumit Chopra, and Yann LeCun. “Dimensionality reduction
by learning an invariant mapping”. In: Proc. of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (2006).

[63] Richard W. Hamming. “Error detecting and error correcting codes”. In:
Bell System Technical Journal 29.2 (1950).

[64] Fei Han and Yu Shen. “Accurate Spear Phishing Campaign Attribu-
tion and Early Detection”. In: Proc. of ACM Symposium on Applied
Computing (SAC). 2016.

[65] Steve Hanna, Edward Wu, Saung Li, Charles Chen, Dawn Song, and
Ling Huang. “Juxtapp: A Scalable System for Detecting Code Reuse
Among Android Applications”. In: Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA). 2012.

[66] Seth Hardy, Masashi Crete-Nishihata, Katharine Kleemola, Adam Senft,
Byron Sonne, Greg Wiseman, Phillipa Gill, and Ronald J. Deibert.
“Targeted Threat Index: Characterizing and Quantifying Politically-
Motivated Targeted Malware”. In: Proc. of USENIX Security Symposium.
2014.

https://info.greathorn.com/2017-spear-phishing-report
https://info.greathorn.com/2017-spear-phishing-report

114 REFERENCES

[67] David Haussler. Convolution kernels on discrete structures. Tech. rep.
UCSC-CRL-99-10. UC Santa Cruz, 1999.

[68] Jorge L Hernandez-Ardieta, Juan E Tapiador, and Guillermo Suarez-
Tangil. “Information sharing models for cooperative cyber defence”. In:
Proc. of IEEE International Conference on Cyber Conflict (CyCon).
2013.

[69] Shohei Hido and Hisashi Kashima. “A linear-time graph kernel”. In: Proc.
of International Conference on Data Mining (ICDM) (2009).

[70] Grant Ho, Aashish Sharma Mobin Javed, Vern Paxson, and David
Wagner. “Detecting Credential Spearphishing Attacks in Enterprise
Settings”. In: Proc. of USENIX Security Symposium. 2017.

[71] Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. “Large-scale malware
indexing using function-call graphs”. In: Proc. of ACM Conference on
Computer and Communications Security (CCS). 2009.

[72] Eric M. Hutchins, Michael J. Cloppert, and Rohan M. Amin. “Intelligence-
Driven Computer Network Defense Informed by Analysis of Adversary
Campaigns and Intrusion Kill Chains”. In: 6th Annual International
Conference on Information Warfare and Security (2011).

[73] FireEye Inc. Evasive Tactics: Taidoor. 2016. url: https://www.fireeye.
com/blog/threat-research/2013/09/evasive-tactics-taidoor-3.html.

[74] Trend Micro Inc. Spear-Phishing Email: Most Favored APT Attack Bait.
Tech. rep. Trend Micro Inc., 2012.

[75] International Telecommunication Union (ITU). ICT Facts and Figures
2017. 2018. url: https://www.itu.int/en/ITU-D/Statistics/Pages/
facts/default.aspx.

[76] Jiyong Jang, David Brumley, and Shobha Venkataraman. “BitShred:
Feature Hashing Malware for Scalable Triage and Semantic Analysis”. In:
Proc. of ACM Conference on Computer and Communications Security
(CCS). 2011.

[77] Thorsten Joachims. Learning to classify text using support vector ma-
chines: Methods, theory and algorithms. Kluwer Academic Publishers
Norwell, 2002.

[78] Thorsten Joachims. Text Categorization with Support Vector Machines:
Learning with Many Relevant Features. Tech. rep. 23. LS VIII, University
of Dortmund, 1997.

[79] Panos Kampanakis. “Security Automation and Threat Information-
Sharing Options”. In: IEEE Security & Privacy 12.5 (2014).

[80] Joris Kinable and Orestis Kostakis. “Malware classification based on call
graph clustering”. In: Journal in Computer Virology (2011).

[81] Darien Kindlund, Ned Moran, and Rob Rachwald. WORLD WAR C:
Understanding Nation-State Motives Behind Today’s Advanced Cyber
Attacks. Tech. rep. FireEye Inc., 2014.

https://www.fireeye.com/blog/threat-research/2013/09/evasive-tactics-taidoor-3.html
https://www.fireeye.com/blog/threat-research/2013/09/evasive-tactics-taidoor-3.html
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx

References 115

[82] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, En-
gin Kirda, Xiao-yong Zhou, and XiaoFeng Wang. “Effective and Efficient
Malware Detection at the End Host”. In: Proc. of USENIX Security
Symposium. 2009.

[83] Risi Imre Kondor and John Lafferty. “Diffusion kernels on graphs and
other discrete input spaces”. In: Proc. of International Conference on
Machine Learning (ICML) (2002).

[84] Maciej Korczynski, Ali Hamieh, Jun Ho Huh, Henrik Holm, S Raj
Rajagopalan, and Nina H Fefferman. “DIAMoND: Distributed Intru-
sion/Anomaly Monitoring for Nonparametric Detection”. In: Proc. the
24th International Conference on Computer Communications and Net-
works. 2015.

[85] Jens Krinke. “Identifying Similar Code with Program Dependence
Graphs”. In: Proc. of Working Conference on Reverse Engineering
(WCRE). 2001.

[86] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson,
and Giovanni Vigna. “Polymorphic Worm Detection Using Structural
Information of Executables”. In: Recent Adances in Intrusion Detection
(RAID). 2005.

[87] Tammo Krueger, Hugo Gascon, Nicole Kraemer, and Konrad Rieck.
“Learning Stateful Models for Network Honeypots”. In: Proc. of ACM
Workshop on Artificial Intelligence and Security (AISEC). 2012.

[88] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and Felix
Freiling. “Fingerprinting mobile devices using personalized configura-
tions”. In: Proc. of Privacy Enhancing Technologies Symposium (PETS).
2016.

[89] Kaspersky Lab. Advanced Threat Defense and Targeted Attack Risk
Mitigation. 2017.

[90] Kaspersky Lab. Targeted cyberattacks logbook. 2018. url: https://apt.
securelist.com/#!/threats.

[91] Kaspersky Lab. The Regin Platform: Nation-State Ownage of GSM
Networks. 2014.

[92] Ralph Langner. “Stuxnet: Dissecting a Cyberwarfare Weapon”. In: IEEE
Security and Privacy 9.3 (2011).

[93] Eric Lin, John Aycock, and Mohammad Mannan. “Lightweight Client-
Side Methods for Detecting Email Forgery”. In: Proc. of International
Workshop on Information Security Applications (WISA). 2012.

[94] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. “GPLAG: detection
of software plagiarism by program dependence graph analysis”. In: Proc.
of ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD). 2006.

[95] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker.
“Learning to detect malicious URLs”. In: ACM Transactions on Intelli-
gent Systems and Technology 2.3 (2011).

https://apt.securelist.com/#!/threats
https://apt.securelist.com/#!/threats

116 REFERENCES

[96] Laurens van der Maaten and Geoffrey Hinton. “Visualizing high-dimensional
data using t-SNE”. In: Journal of Machine Learning Research (JMLR)
(2008).

[97] Mandiant. APT1: Exposing one of China’s cyber espionage units. Tech.
rep. Mandiant Intelligence Center, 2013.

[98] Mandiant. Sophisticated Indicators for the Modern Threat Landscape:
An Introduction to OpenIOC. Tech. rep. Mandiant Whitepaper, 2013.

[99] Mandiant. M-Trends 2017: A View from the Front Lines. 2017.
[100] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. “Detecting

near-duplicates for web crawling”. In: Proc. of International World Wide
Web Conference (WWW). 2007.

[101] Bill Marczak and John Scott-Railton. The Million Dollar Dissident.
Tech. rep. Munk School of Global Affairs’ Citizen Lab, University of
Toronto, 2016.

[102] Morgan Marquis-Boire, Claudio Guarnieri, and Ryan Gallagher. Secret
Malware In European Union Attack Linked to U.S. and British Intelli-
gence. 2014. url: https://theintercept.com/2014/11/24/secret-regin-
malware-belgacom-nsa-gchq.

[103] Morgan Marquis-Boire, Bill Marczak, Claudio Guarnieri, and John Scott-
Railton. For Their Eyes Only: The Commercialization of Digital Spying.
Tech. rep. Munk School of Global Affairs’ Citizen Lab, University of
Toronto, 2013.

[104] Morgan Marquis-Boire, Marion Marschalek, and Claudio Guarnieri. “Big
game hunting: The peculiarities in nation-state malware research”. In:
Black Hat, Las Vegas, NV, USA (2015).

[105] Trend Micro. Targeted Attacks. 2018. url: https://www.trendmicro.
com/vinfo/us/security/definition/targeted-attacks.

[106] Jiang Ming, Meng Pan, and Debin Gao. “iBinHunt: Binary Hunting with
Inter-procedural Control Flow”. In: Information Security and Cryptology
(ICISC). 2012.

[107] Daniel Moore and and Rid Thomas. Penquin’s Moonlit Maze, The Dawn
of Nation-State Digital Espionage. Tech. rep. Kaspersky Lab, 2017. url:
https://securelist.com/penquins-moonlit-maze/77883/.

[108] Tatsuya Mori, Kazumichi Sato, Yousuke Takahashi, and Keisuke Ishibashi.
“How is e-Mail Sender Authentication Used and Misused?” In: Proc. of
8th Annual Collaboration, Electronic Messaging, Anti-Abuse and Spam
Conference (CEAS). 2011.

[109] University of Toronto Munk School of Global Affairs’ Citizen Lab.
Malware Indicators. 2017. url: https://github.com/citizenlab/malware-
indicators.

[110] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang
Liu, and Santhoshkumar Saminathan. “subgraph2vec: Learning Dis-
tributed Representations of Rooted Sub-graphs from Large Graphs”. In:
arXiv (2016).

https://theintercept.com/2014/11/24/secret-regin-malware-belgacom-nsa-gchq
https://theintercept.com/2014/11/24/secret-regin-malware-belgacom-nsa-gchq
https://www.trendmicro.com/vinfo/us/security/definition/targeted-attacks
https://www.trendmicro.com/vinfo/us/security/definition/targeted-attacks
https://securelist.com/penquins-moonlit-maze/77883/
https://github.com/citizenlab/malware-indicators
https://github.com/citizenlab/malware-indicators

References 117

[111] Mark Orlando. Threat Intelligence is Dead. Long Live Threat Intelli-
gence! RSA Conference. 2015.

[112] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, et al. “Scikit-learn: Machine learning in
Python”. In: Journal of Machine Learning Research (JMLR) 12 (2011).

[113] Nicole Perlroth. Researchers Find 25 Countries Using Surveillance
Software. 2013. url: https://bits.blogs.nytimes.com/2013/03/13/
researchers-find-25-countries-using-surveillance-software.

[114] Stephen Pritchard. Espionage and industry in the internet era. Financial
Times. 2015. url: https://www.ft.com/content/01714ea4-262e-11e5-
bd83-71cb60e8f08c.

[115] Jathushan Rajasegaran and Suranga Seneviratne. “A Neural Embeddings
Approach for Detecting Mobile Counterfeit Apps”. In: arXiv (2018).

[116] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi.
“Graph kernels for chemical informatics”. In: Neural networks 18.8 (2005).

[117] IBM Research. PC Virus Timeline. 2001. url: https://web.archive.
org/web/20121027045532/http://www.research.ibm.com:80/antivirus/
timeline.htm.

[118] Ned Freed and Nathaniel Borenstein. Multipurpose Internet Mail Ex-
tensions (MIME) Part One: Format of Internet Message Bodies. RFC
2045 (Draft Standard). RFC. Updated by RFCs 2184, 2231, 5335, 6532.
Fremont, CA, USA: RFC Editor, Nov. 1996. url: https://www.rfc-
editor.org/rfc/rfc2045.txt.

[119] Ned Freed and Keith Moore. MIME Parameter Value and Encoded Word
Extensions: Character Sets, Languages, and Continuations. RFC 2231
(Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, Nov. 1997.
url: https://www.rfc-editor.org/rfc/rfc2231.txt.

[120] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings.
RFC 4648 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor,
Oct. 2006. url: https://www.rfc-editor.org/rfc/rfc4648.txt.

[121] Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw, and Rodney
Thayer. OpenPGP Message Format. RFC 4880 (Proposed Standard).
RFC. Updated by RFC 5581. Fremont, CA, USA: RFC Editor, Nov.
2007. url: https://www.rfc-editor.org/rfc/rfc4880.txt.

[122] Peter Resnick. Internet Message Format. RFC 5322 (Draft Standard).
RFC. Updated by RFC 6854. Fremont, CA, USA: RFC Editor, Oct.
2008. url: https://www.rfc-editor.org/rfc/rfc5322.txt.

[123] Blake Ramsdell and Sean Turner. Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.2 Message Specification. RFC 5751
(Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, Jan. 2010.
url: https://www.rfc-editor.org/rfc/rfc5751.txt.

https://bits.blogs.nytimes.com/2013/03/13/researchers-find-25-countries-using-surveillance-software
https://bits.blogs.nytimes.com/2013/03/13/researchers-find-25-countries-using-surveillance-software
https://www.ft.com/content/01714ea4-262e-11e5-bd83-71cb60e8f08c
https://www.ft.com/content/01714ea4-262e-11e5-bd83-71cb60e8f08c
https://web.archive.org/web/20121027045532/http://www.research.ibm.com:80/antivirus/timeline.htm
https://web.archive.org/web/20121027045532/http://www.research.ibm.com:80/antivirus/timeline.htm
https://web.archive.org/web/20121027045532/http://www.research.ibm.com:80/antivirus/timeline.htm
https://www.rfc-editor.org/rfc/rfc2045.txt
https://www.rfc-editor.org/rfc/rfc2045.txt
https://www.rfc-editor.org/rfc/rfc2231.txt
https://www.rfc-editor.org/rfc/rfc4648.txt
https://www.rfc-editor.org/rfc/rfc4880.txt
https://www.rfc-editor.org/rfc/rfc5322.txt
https://www.rfc-editor.org/rfc/rfc5751.txt

118 REFERENCES

[124] Dave Crocker, Tony Hansen, and Murray Kucherawy. DomainKeys
Identified Mail (DKIM) Signatures. RFC 6376 (Internet Standard). RFC.
Fremont, CA, USA: RFC Editor, Sept. 2011. url: https://www.rfc-
editor.org/rfc/rfc6376.txt.

[125] Scott Kitterman. Sender Policy Framework (SPF) for Authorizing Use
of Domains in Email, Version 1. RFC 7208 (Proposed Standard). RFC.
Updated by RFC 7372. Fremont, CA, USA: RFC Editor, Apr. 2014.
url: https://www.rfc-editor.org/rfc/rfc7208.txt.

[126] Murray Kucherawy and Elizabeth Zwicky. Domain-based Message Au-
thentication, Reporting, and Conformance (DMARC). RFC 7489 (In-
formational). RFC. Fremont, CA, USA: RFC Editor, Mar. 2015. url:
https://www.rfc-editor.org/rfc/rfc7489.txt.

[127] Konrad Rieck, Christian Wressnegger, and Alexander Bikadorov. “Sally:
A Tool for Embedding Strings in Vector Spaces”. In: Journal of Machine
Learning Research (JMLR) 13 (2012).

[128] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and
Mansour Ahmadi. “Microsoft Malware Classification Challenge”. In:
arXiv (2015).

[129] Andrew Rosenberg and Julia Hirschberg. “V-measure: A conditional
entropy-based external cluster evaluation measure”. In: Proc. of joint
conference on empirical methods in natural language processing and
computational natural language learning (EMNLP-CoNLL). 2007.

[130] Ishai Rosenberg, Guillaume Sicard, and Eli Omid David. “DeepAPT:
Nation-State APT Attribution Using End-to-End Deep Neural Net-
works”. In: Proc. of International Conference on Artificial Neural Net-
works (ICANN). 2017.

[131] Ishai Rosenberg, Guillaume Sicard, and Eli Omid David. “End-to-End
Deep Neural Networks and Transfer Learning for Automatic Analysis of
Nation-State Malware”. In: Entropy (2018).

[132] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan,
and Zhendong Su. “Detecting Code Clones in Binary Executables”. In:
Proc. of International Symposium on Software Testing and Analysis
(ISSTA). 2009.

[133] Gerard Salton, Anita Wong, and Chung-Shu Yang. “A Vector Space
Model for Automatic Indexing”. In: Communications of the ACM 18.11
(1975).

[134] Secureworks. Advanced Persistent Threats: Learn the ABCs of APTs
- Part A. 2016. url: https://www.secureworks.com/blog/advanced-
persistent-threats-apt-a.

[135] Oscar Serrano, Luc Dandurand, and Sarah Brown. “On the design of
a cyber security data sharing system”. In: Proc. of ACM Workshop on
Information Sharing & Collaborative Security (WISCS). 2014.

https://www.rfc-editor.org/rfc/rfc6376.txt
https://www.rfc-editor.org/rfc/rfc6376.txt
https://www.rfc-editor.org/rfc/rfc7208.txt
https://www.rfc-editor.org/rfc/rfc7489.txt
https://www.secureworks.com/blog/advanced-persistent-threats-apt-a
https://www.secureworks.com/blog/advanced-persistent-threats-apt-a

References 119

[136] Shanhu Shang, Ning Zheng, Jian Xu, Ming Xu, and Haiping Zhang.
“Detecting malware variants via function-call graph similarity”. In: Proc.
of International Conference on Malicious and Unwanted Software (MAL-
WARE). 2010.

[137] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn,
and Karsten Borgwardt. “Efficient graphlet kernels for large graph com-
parison”. In: Artificial Intelligence and Statistics. 2009.

[138] Aditya K. Sood and Richard Enbody. “Targeted cyber attacks, a superset
of advanced persistent threats”. In: IEEE Security and Privacy (2012).

[139] Splunk. Splunk Threat Intelligence Dashboards. 2016. url: http://docs.
splunk.com/Documentation/ES/4.2.0/User/ThreatIntelligence.

[140] Jessica Steinberger, Anna Sperotto, Mario Golling, and Harald Baier.
“How to exchange security events? Overview and evaluation of formats
and protocols”. In: Proc. of IEEE International Symposium on Integrated
Network Management (IM). 2015.

[141] Gianluca Stringhini and Olivier Thonnard. “That Ain’t You: Block-
ing Spearphishing Through Behavioral Modelling”. In: Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA). 2015.

[142] Symantec Corporation. 2018 Internet security threat report. Tech. rep.
2018. url: https://www.symantec.com/content/dam/symantec/docs/
reports/istr-23-2018-en.pdf.

[143] Trend Micro Threat Research Team. The Taidoor Campaign. An In-
Depth Analysis. Tech. rep. Trend Micro, 2012.

[144] Md. Sharif Uddin, Chanchal K. Roy, Kevin A. Schneider, and Abram
Hindle. “On the Effectiveness of Simhash for Detecting Near-Miss Clones
in Large Scale Software Systems”. In: Proc. of Working Conference on
Reverse Engineering (WCRE). 2011.

[145] Tristan Vanderbruggen. “Application of Deep-Learning to Compiler-
Based Graphs”. PhD thesis. University of Delaware, 2018.

[146] Tristan Vanderbruggen and John Cavazos. “Large-Scale Exploration of
Feature Sets and Deep Learning Models to Classify Malicious Applica-
tions”. In: Resilience Week (RWS). 2017.

[147] Alien Vault. Open Threat Exchange. 2016. url: https://www.alienvault.
com/open-threat-exchange.

[148] Rakesh Verma, Narasimha Shashidhar, and Nabil Hossain. “Detecting
Phishing Emails the Natural Language Way.” In: Proc. of European
Symposium on Research in Computer Security (ESORICS). 2012.

[149] VirusTotal. url: https://www.virustotal.com.
[150] Cynthia Wagner, Gerard Wagener, Radu State, and Thomas Engel.

“Malware analysis with graph kernels and support vector machines”. In:
Proc. of International Conference on Malicious and Unwanted Software
(MALWARE). 2009.

http://docs.splunk.com/Documentation/ES/4.2.0/User/ThreatIntelligence
http://docs.splunk.com/Documentation/ES/4.2.0/User/ThreatIntelligence
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.alienvault.com/open-threat-exchange
https://www.alienvault.com/open-threat-exchange
https://www.virustotal.com

120 REFERENCES

[151] Jingguo Wang, Tejaswini Herath, Rui Chen, Arun Vishwanath, and
H. Raghav Rao. “Research article phishing susceptibility: An investiga-
tion into the processing of a targeted spear phishing email”. In: IEEE
Transactions on Professional Communication 55.4 (2012).

[152] Ke Wang, Janak J. Parekh, and Salvatore J. Stolfo. “Anagram: A Content
Anomaly Detector Resistant To Mimicry Attack”. In: Recent Adances in
Intrusion Detection (RAID). 2006.

[153] Barry Wellman. “Physical Place and CyberPlace: The Rise of Person-
alized Networking”. In: International Journal of Urban and Regional
Research 25.2 (2001).

[154] Bronwyn Woods, Samuel J. Perl, and Brian Lindauer. “Data Mining for
Efficient Collaborative Information Discovery Categories and Subject
Descriptors”. In: Proc. of 2nd ACM Workshop on Information Sharing
and Collaborative Security. 2015.

[155] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. “Neural Network-based Graph Embedding for Cross-Platform
Binary Code Search”. In: Proc. of ACM Conference on Computer and
Communications Security (CCS). 2017.

[156] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck. “Generalized
Vulnerability Extrapolation using Abstract Syntax Trees”. In: Proc. of
Annual Computer Security Applications Conference (ACSAC). 2012.

[157] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck.
“Automatic Inference of Search Patterns for Taint-Style Vulnerabilities”.
In: Proc. of IEEE Symposium on Security and Privacy. 2015.

[158] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad
Rieck. “Chucky: Exposing Missing Checks in Source Code for Vulner-
ability Discovery”. In: Proc. of ACM Conference on Computer and
Communications Security (CCS). 2013.

[159] Kim Zetter. Countdown to Zero Day: Stuxnet and the launch of the
world’s first digital weapon. Broadway books, 2014.

[160] Kim Zetter. Inside the cunning, unprecedented hack of Ukraine’s power
grid. Wired. 2016. url: https ://www.wired.com/2016/03/inside-
cunning-unprecedented-hack-ukraines-power-grid/.

[161] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. “Detecting repack-
aged smartphone applications in third-party android marketplaces”. In:
Proc. of ACM Conference on Data and Application Security and Privacy
(CODASPY). 2012.

https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

	Zusammenfassung
	Abstract
	Table of contents
	List of figures
	List of tables
	Publications
	1 Introduction
	1.1 Targeted Attacks
	1.2 Defense against Targeted Attacks with Machine Learning
	1.3 Thesis Contribution
	1.4 Thesis Organization

	2 Detection
	2.1 Traits in Email Structure
	2.2 Content-Agnostic Spear-Phishing Detection
	2.3 Evaluation
	2.4 Limitations
	2.5 Related Work
	2.6 Summary

	3 Analysis
	3.1 Structural Malware Triage
	3.2 Call Graph Extraction and Labeling
	3.3 Explicit Graph Embeddings for Malware
	3.4 Learning Graph Embeddings for Malware Classification
	3.5 Evaluation
	3.6 Limitations
	3.7 Related Work
	3.8 Summary

	4 Response
	4.1 Threat Intelligence
	4.2 The MANTIS Platform
	4.3 Threat Similarity Analysis
	4.4 Evaluation
	4.5 Limitations
	4.6 Related Work
	4.7 Summary

	5 Conclusions and Outlook
	5.1 Summary of Results
	5.2 Future Work

	Appendix A Traits in Email Structure for Characterization of Senders
	References

